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ABSTRACT

This paper presents a fixed point update for adaptation of
the kernel width parameter in information theoretic crite-
ria. These criteria are typically non-parametric and require
a kernel width parameter to be appropriately set. The ker-
nel width sets the smoothing bandwidth for estimation of
the probability distribution of the error and, consequently,
affects the performance surface. Hence, adaptation of the
kernel width allows for the criterion, and its performance
surface, to be adjusted to changes in the signal distribution.
It is shown that the proposed fixed point update converges
faster and is more stable when compared to a gradient up-
date, and has no parameters. Moreover, it can be simpli-
fied to achieve the same computational complexity as the
stochastic gradient update.

1. INTRODUCTION

Adaptive systems learn from examples by optimizing its pa-
rameters according to a prescribed criterion or cost func-
tion. The criterion measures the performance of the system
for a specific task and must be chosen carefully to ensure
that the adaptive system learns towards the optimum for the
application [1]. The mean squared error (MSE) is the most
widely used criterion, primarily due to its ease of mathemat-
ical treatment, and because, in some cases, the optimization
is convex which leads to closed form solutions. On the other
hand, it is only a second order moment of the error. While
this ensures optimality of the optimization for Gaussian dis-
tributed error, if the error is non-Gaussian, a different set of
system parameters may exist which is better suited for the
application [2].

One solution is to develop a criterion that accounts for
second and higher-order moments. Information theoretic
criteria have this property because they take the whole sig-
nal distribution into account [3]. Adaptive systems train-
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ing using information theoretic criteria have been shown
to yield better results in a number of applications where
the signals are not Gaussian, such as adaptive system train-
ing [2], blind source separation [4], and independent com-
ponent analysis [5].

However, the advantages of information theoretic crite-
ria have been achieved at a cost: the need to set a kernel
width1 parameter for the sample estimators [3]. This pa-
rameter controls the smoothing bandwidth in the estimation
of the probability distribution of the signal [6] and, conse-
quently, affects the performance surface [7]. If the error
distribution changes, for example, as a result of learning or
due to a changing environment, the kernel width should be
adapted to ensure that the criterion accurately reflects the
signal statistics.

Kernel width selection has been discussed extensively
in the statistical literature (see Jones et al. [8] for a sur-
vey), typically based on the mean integrated squared error
(MISE), or its variants, or based on cross-validation meth-
ods. Instead, Singh and Principe [9, 10] recently proposed
to minimize the Kullback-Leibler (KL) divergence between
the estimated and true signal distribution, a strategy that
has been shown to compare favorably to optimization of
the MISE [9]. They then propose a gradient update rule
for adaptation of the kernel width. Although this strategy
avoids having to set the kernel width directly and adapts to
changes in signal statistics, it still requires a stepsize to be
appropriately chosen. Moreover, as shown in our results,
choosing the stepsize is not trivial, and represents a trade-
off between tracking ability and stability of the kernel width
estimate. Instead, this paper proposes a fixed point update
rule for kernel width adaptation that effectively eliminates
the stepsize and yields an information theoretic cost without
extra free parameters. The results show that this approach
is much more stable and has better tracking ability. Finally,
all of this is achieved with the computational complexity as
the gradient update rule.

1Also known as, kernel size or kernel bandwidth.



2. CRITERION FOR KERNEL WIDTH
ADAPTATION

Information theoretic criteria summarize the signal distribu-
tion. In these criteria, the kernel width controls the smooth-
ing introduced by a kernel function used for non-parametric
estimation of the probability density function (pdf) from
samples, as in Parzen windows [6]. Thus, the ideal kernel
width should be such that the corresponding pdf estimate
approximates the true distribution.

To solve this problem, Singh and Principe [9] proposed
to minimize the KL divergence between the true and esti-
mated pdfs, denoted f(x) and f̂σ(x), as a function of the
kernel width. That is, to minimize

DKL(f‖f̂σ) =
∫
f(x) log

(
f(x)

f̂σ(x)

)
dx, (1)

where the subscript σ in f̂ explicitly shows the dependence
of the estimated pdf on the kernel width σ. Expanding eq. 1,
we obtain

DKL(f‖f̂σ)

=

∫
f(x) log(f(x))dx−

∫
log(f̂σ(x))f(x)dx (2a)

=

∫
f(x) log(f(x))dx− E

[
log(f̂σ(x))

]
. (2b)

where E [·] denotes the expectation over x with regards to
the true distribution. Since the first term of eq. 2b does not
depend on the kernel width, minimizing DKL(f‖f̂σ) with
respect to σ is achieved by maximizing the second term.
Hence, the optimum kernel width is the σ that maximizes
the criterion,

JKL(σ) = E
[
log(f̂σ(x))

]
. (3)

In practice, JKL(σ) must be estimated from samples
{x1, x2, . . . , xN}. The estimated distribution evaluated at
x is given by [6],

f̂σ(x) =
1

N

N∑
i=1

Kσ(x− xi), (4)

where Kσ is the smoothing kernel function, often taken to
be a symmetric probability density, with width σ. In this
work, we will consider only the Gaussian kernel,

Gσ(x) =
1√
2πσ

exp

(
− x2

2σ2

)
. (5)

Substituting in eq. 3 and approximating the expectation as
the mean over the samples, yields the following estimator,

ĴKL(σ) =
1

N

N∑
i=1

log

 1

N − 1

∑
j=1,j 6=i

Gσ(x− xj)

 .

(6)

3. FIXED POINT UPDATE

The optimum kernel width corresponds to the maximum of
JKL(σ), which can be found by equating to zero its deriva-
tive with regards to σ. The derivative of JKL(σ) is

∂JKL(σ)

∂σ
= E

[
∂f̂σ(x)/∂σ

f̂σ(x)

]
(7)

= E

∑N
i=1 exp

(
− (x−xi)

2

2σ2

)(
(x−xi)

2

σ3 − 1
σ

)
∑N
i=1 exp

(
− (x−xi)2

2σ2

)
 .

(8)

Then, equating to zero yields

∂JKL(σ)

∂σ
= 0

⇔ 1

σ2
E

∑N
i=1 exp

(
− (x−xi)

2

2σ2

)
(x− xi)2∑N

i=1 exp
(
− (x−xi)2

2σ2

)
 = 1

⇔ σ =

√√√√√E

∑N
i=1 exp

(
− (x−xi)2

2σ2

)
(x− xi)2∑N

i=1 exp
(
− (x−xi)2

2σ2

)
. (9)

Thus, a fixed point update towards the optimum kernel width
is

σn+1 =

√√√√√ 1

N

N∑
i=1

∑N
j=1,j 6=i exp

(
− (xi−xj)2

2σ2
n

)
(xi − xj)2∑N

j=1,j 6=i exp
(
− (xi−xj)2

2σ2
n

) ,

(10)
where the expectation has been replaced with the sample
mean. Note that the fixed point update converges because
the mapping has derivative smaller than one and is there-
fore contractive, as demonstrated in Fig. 1. It is interesting
to verify that the proposed fixed point update ensures that
the estimated kernel width is non-negative. Note that the
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Fig. 1: Fixed point update (eq. 10) as a function of σn−1, (a)
for signals with the standard deviation shown in the legend,
and (b) its corresponding derivative. The ‘◦’ marks in (a)
indicate the fixed points.



gradient update does not ensure non-negativity and it must
be enforced externally.

The main problem with this fixed point update rule is its
computational complexity, which is O(N2), due to the ap-
proximation of the expectation with the sample mean. Typ-
ically, however, the kernel width will be adapted together
with the system parameters at every update step. Hence,
instead of approximating the expectation directly, it can be
approximated over time.

Specifically, we propose to approximate the expectation
by evaluating its argument for the current sample (with the
sums running over the previous N − 1 samples) and aver-
age over the previous N values. This requires that we keep
track of the previous N evaluations of the argument of the
expectation. Summarizing, the estimated kernel width for
the nth update step is,

σn =

√√√√ 1

N

n∑
i=n−N+1

σ̃2
i , (11)

where,

σ̃2
n =

∑n−1
i=n−N+1 exp

(
− (xn−xi)

2

2σ2
n−1

)
(xn − xi)2∑n−1

j=n−N+1 exp
(
− (xn−xi)2

2σ2
n−1

) . (12)

In essence, this approach is equivalent to using an aver-
aging filter to smooth noisy estimates of the square of the
kernel width, σ̃2

i . Note that the memory depth of the av-
eraging was set equal to the number of samples for density
estimationN , since this parameter already controls the tem-
poral resolution of the gradient on the system parameters.
Moreover, in this way one avoids dependence on additional
parameters. Obviously, this parameter can be fine tuned, but
a user does not need to and setting it is very intuitive. All
our results use the default value.

The computation complexity of the fixed point update
described in eqs. 11 and 12 is only O(N). This is just
like the stochastic gradient update proposed in [9, 10], and
avoids the need to set a stepsize. The only caveat being the
need to store N intermediate values of σ̃2

i . Nevertheless,
since in practice N is a relatively small number, typically
around 100 or less, this is a minor issue.

Integrating the kernel width update rule in the learning
process of an adaptive system follows naturally. At every
step, one starts by updating the estimate of the kernel width
given the latest sample. Then, the system’s parameters are
updated according to the information theoretic criteria up-
date strategy using the estimated kernel size.

0 200 400 600 800 1000

−6

−4

−2

0

2

4

6

iteration

 

 

data
gradient update
fixed−point update

(a)

0 200 400 600 800 1000

−8

−6

−4

−2

0

2

4

6

8

iteration

 

 

data
gradient update
fixed−point update

(b)

Fig. 2: Comparison of the estimated kernel width using the
gradient and fixed point update of non-stationary signals.
Two cases are shown: (a) the power of the signal decays
exponentially, and (b) the signal has an abrupt change in
power.

4. SIMULATION RESULTS

The fixed point update is now compared to the stochastic
gradient update2 for the estimation of the kernel width on
non-stationary signals. We show that the fixed point update
rule converges faster to the optimum kernel width and yields
a more stable estimate.

The examples shown here mimic typical situations where
the error signal of an adaptive system changes over time;
i.e., the signal is non-stationary. This can be a normal con-
sequence of the training (Fig. 2(a)), or due to changes in the

2The kernel width was adapted by doing stochastic gradient ascend ac-
cording to eq. 8, after dropping the expectation [9, 10].
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Fig. 3: (a) Kernel width adaptation criterion JKL(σ) and (b)
its derivative, as functions of σ for a Gaussian signal with
unit variance.

environment which cause a mismatch with the learned sys-
tem, such as those often encountered in mobile communi-
cation systems (Fig. 2(b)). Either scenario is modeled here
with a Gaussian signal with time-varying power.

As shown in Fig. 2, the fixed point update converges
rapidly to the optimum kernel width and is quite stable. In
contrast, the adaptation of the kernel width using the gra-
dient update is considerably slower and exhibits occasion-
ally sudden jumps. This is due to the skewness in the cri-
terion, as illustrated in Fig. 3(a), which can yield very dif-
ferent gradient magnitudes depending on the value of the
current kernel width with regards to the optimum, as shown
in Fig. 3(b). Consequently, when the kernel width is larger
than the optimum the gradient is small and the convergence
slow, but for small kernel widths the gradient is much larger,
yielding the observed jumps. This problem is particularly
noticeable for small kernel widths because the optimum ker-
nel width is closer to the region with high gradient magni-
tudes. Clearly, reducing the stepsize for the gradient up-
date could potentially solve the problem but then the con-
vergence would become even slower. It should be remarked
that, as suggested in [9], a small regularization constant of
ε = 0.01 was added to the denominator of the stochas-
tic gradient of JKL(σ). This already helps to mitigate the
observed jumps by preventing large gradient values due to
the denominator becoming very small. This is encountered
if the current sample is very different from the previous,
which may occur, for example, if the signal power increases
abruptly. Interestingly, we found empirically that the fixed
point update operates better without this regularization term.

5. CONCLUSION

This paper presents a fixed point update for adaptation of
the kernel width parameter. Our simulation results show
that the proposed update rule converges significantly faster
than the gradient update previously presented by Singh and
Principe [9, 10], and yields much more stable kernel width
estimates. In addition to these improvements, the proposed

fixed point update has the advantage that it eliminates the
need to specify the learning rate for kernel width adapta-
tion without introducing any additional parameters. This is
unlike the gradient update rule which in essence substitutes
the problem of setting the kernel width by that of setting a
stepsize. Even though the later is preferable, the fixed point
update effectively saves the user the need to specify one pa-
rameter compared to the typically use of information the-
oretic criteria. Finally, all of these advantages are attained
with the same computation complexity,O(N), as the gradi-
ent update.
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