WORKSHOP ON MICROSCOPIC IMAGE ANALYSIS WITH APPLICATIONSN BIOLOGY, SEPTEMBER 2009 1

Serial Neural Network Classifier for Membrane
Detection using a Filter Bank

Elizabeth Jurrus%?, Antonio R. C. Paivh, Shigeki Watanabe
Ross Whitaker?, Erik M. Jorgenset) Tolga Tasdizeh!

1Scientific Computing and Imaging Institute

2School of Computing, University of Utah

3Department of Biology, University of Utah
4Department of Electrical Engineering, University of Utah

Abstract— Study of nervous systems via the connectome, i.e. I ﬁ
the map of the connectivities of all neurons in that system, v 1
is a challenging problem in neuroscience. Towards this goal L

neurobiologists are acquiring large electron microscopy dtasets. NN, |—Cc—=/S/—| NN, |--. | NN. | -
Automated image analysis methods are required for reconstrct- 1 C 2 n

ing the connectome from these very large image collections.
Segmentation of neurons in these images, an essential step
of the reconstruction pipe"ne, is Cha”enging because of (]'lse, Fig. 1. Serjal neural network. [: Input, F: filter bank, SIgh‘:ﬁ)Ol‘hOOd stencil,
irregular shapes and brightness, and the presence of confading ~ C: context image, T: threshold.

structures. The method described in this paper uses a carelly

designed set of filters and a series of artificial neural netwds o ) o
(ANNS) in an auto-context architecture to detect neuron mem are sufficiently robust for segmenting neurons with littteno
branes. Employing auto-context means that several ANNs are user intervention.

applied in series while allowing each ANN to use the classifition Segmentation of neurons from EM is a difficult task. The
context provided by the previous network to improve detectbn quality and noise in the image can vary depending on the

accuracy. We use the responses to a set of filters as input to_, . - -
the seri)eles of ANNs and Fs),how that the learned contextpdoesth'Ck”eSS of the EM sections causing the membranes to change

improve detection over traditional ANNs. We also demonstrge  In intensity and contrast. In addition, intracellular stures
advantages over previous membrane detection methods. Thesuch as mitochondria and synaptic vesicles render ingensit

results are a significant step towards an automated system fo thresholding methods ineffective for isolating cell meares
the reconstruction of the connectome. (Figure 4(b)). The method described in this paper uses a
series of artificial neural networks (ANNSs) to more accusate
detect membranes in EM images, which is a necessary step
for improved three-dimensional neuron segmentation. Tke fi
Models of neural circuits are fundamental to the study #fNN uses as input a bank of oriented filters that were designed
the central nervous system. However, relatively littlerimn to match membranes. The input to the subsequent ANNs in
about the connectivity of neurons, and many state-of-thée series is the same set of filters responses, in addition to
art models are insufficiently informed by anatomical grounie output of the previous ANN on a stencil of nearby pixels
truth. Electron microscopy (EM) is a particularly well sadt (as depicted in Figure 1). The idea is that ANNs along the
modality for imaging of neuronal tissue since it provides thseries are able to conciliate context information aboulyik
necessary detail for the reconstruction of large scaleateirr ~ classifications of pixels across the image.
cuits, i.e., theconnectome. However, the complexity and large
number of images makes human interpretation an extremely
labor intensive task. A number of researchers have undmrtak There are several methods that attempt to segment EM
extensive EM imaging projects in order to create detaild@ages of neural tissue. Simple thresholding methods can be
maps of neuronal structure and connectivity [1], [2], [3]. A2Pplied after isotropic or anisotropic smoothing [5], [6lt
significant portion of neural circuit reconstruction reséa these fail to remove internal cellular structures and simul
has focused on the nemato@e elegans which has only 302 taneously detect a sufficiently high percentage of the true
neurons and is one of the simplest organisms with a nervdti§mbranes to make accurate segmentations. While active
system. In spite of its simplicity, the manual reconstrueti contours, in both parametric and level set forms [7], [8],
effort is estimated to have taken more than a decade. New&p provide smooth, accurate segmentations, they require a
imaging techniques are providing even larger volumes frotfitialization and are more appropriate for segmenting\a fe
more complex organisms, further complicating the circug€lls. If the goal is the automatic segmentation of hundreds

reconstruction process [4]. There is a need for algorithms t Or thousands of cells, manual initialization is not preatic
and an automatic initialization is as difficult as isolatitige
*Corresponding author: Elizabeth Jurrus, liz@sci.utdh.e individual cells—which is the purpose of this work.

I. INTRODUCTION
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Fig. 3. (a) Membrane, (b) junction, and (c) vesicle detecfitiers used for
input into the neural network.

Fig. 2. Stencil neighborhood of sizikl x 11 pixels is used on the output and a classification map applied to the classifier output. The

of each ANN to gather context on the output of the ANN. e . . . . L.
classification map is a stencil placed over each pixel coirtgi
information about the features in surrounding pixels, tisat

In related work, Jairet al. used a multilayer convolutional not represented in the original feature set (Figure 2). This
ANN to classify pixels as membrane or non-membrane ﬁ.llows the networks at subsequent steps of the series, show i
specimens prepared with an extracellular stain [9]. Thinst Figure 1, to make decisions about the membrane classificatio

however greatly increases the contrast between the ceﬂicbouumizmg_ nonlocal information. Put different_ly, each geain .
aries and intracellular structures, and therefore sigaitly the series accounts for larger structures in the data, dakin

simplifies the segmentation task. On the other hand, neu?%lvantage of resylts frqm all the previous networks. T_he
circuit reconstruction also requires the detection of . advantages of this architecture are shown later for closing
which is only directly possible when intracellular strues of weak membranes and removal of intracellular structures

are observed and thus cannot be obtained through the ﬁg‘?r each iteration in the series. Combining the original
vious approach. Furthermore, the ANN approach by &in filter responses with features from the output of the classifi
al. contains more than 30,000 parameters and, therefore,'%s'mport?m because, n t-h|s v]:/ay, (tjhf relllevan(tj rrr:embrane
computationally intensive and requires very large trajrats. structure for segmentation is enforced locally and thenraga

On the other extreme, even a perceptron applied to a ceyefLﬂf a_higher level from each step in the series of clas_sifiers.

chosen set of features has been shown to provide reason pfaiven the success of ANNs _for membrgne dete_ct|0n [10],
results in identifying membranes in EM images [10]. Nevet)] and because auto-context is not specifically tied to any
theless, this method still requires significant post preices C'2ssifier, we implement a multilayer perceptron (MLP) ANN

to connect membranes and remove internal cellular strestur®> OUr base _classmer. An MLP IS a feed-forwa_rd netw_ork
In Jurruset al. [6], a contrast enhancing filter followed byWhICh appr_oxmates a boundary with the use of ridges given
a directional diffusion filter is applied to the raw images gy the nonlinearity at each node. In our case, each netwark ha

enhance and connect cellular membranes. The images ¥ Nidden layer with 20 nodes. Although we experimented
then thresholded and neuron membranes are identified usin%'j the use of two hidden layers, no advantage was observed.
watershed segmentation method. An optimal path compatatib€ CutPut of each node is given as,

is performed to join segments across slices, resulting in a y = f(wix+b), (1)
segmentation in three dimensions.

Of conceptual relevance to this work is Tu’s auto-conteXthere f is in our case theanh nonlinearity,x denotes the
method [11], which uses a series of classifiers utilizing-cofputs, w is the weight vector, and is a bias term. The
textual inputs to classify pixels in images. In Tu’s methtbay,  inputs to the first network include the image intensity and
“continuous” output of a classifier, considered as a prdigbi the response to a bank of feature detection filters, destribe
map, and the original set of features are used as inputs to f@xt.
next classifier. The probability map values from the presiou The image features the first ANN uses to learn are mem-
classifiers provide context for the classifier, by using auiea brane and vesicle detection filters. We chose to use filters to
set that consists of samples of the probability map at a largetect features and train the network rather than learrtieg t
neighborhood around each pixel. Each subsequent classifiégrs because we have prior knowledge about the membrane
extends the influence of the probability map in a nonlinegeometry and can design a match filter to detect them.
way, and thus the system can learn the context, or shapEgiee types of feature detection filters were constructed to
associated with a pixel classification problem. Theordjica generate responses for the different types of membranes (se
the series of classifiers improves an approximationaof Figure 3). The first and second filter types are both bars,
posteriori distribution [11]. one to detect membranes and the other to detect membrane
junctions. The width of the bar approximates the width of
the membrane, which in our case is about 5-7 pixels wide.
To detect membranes at different angles, each filter isedtat

The method for membrane segmentation developed héetween 0 and 180 b%0°. The third filter type is a simple
combines the responses from a filter bank designed to matesicle detection filter which helps the network learn pExél
membranes with a series of ANNSs for auto-context [11]. Autshould not classify as membranes, i.e., for rejecting \esidt
context learns from image features computed at local pixé$sconstructed as a circle with an off center surround ragn@in

I1l. METHOD
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radius depending on the size of the vesicles in the images. Ferminates when the cross-validation error increases for 3
the data utilized, the radius varies between 3 and 5 pixalsh E consecutive iterations. To compute the best set of weidlits,
filter is convolved with each pixel in the imagé: = I x F;, Monte Carlo simulations of the network are run, each with a
where [ is the input image and; is theith filter convolved different set of random weights. The weights from the nekwor
with I. The complete filter bankE’, contains the membranewith the highest percentage of correctly trained instarnnes
and junction filters, at rotational increments20P, and several the cross-validation set are used to compute the segnmmntati
scales of vesicle filters, for a total of 32 filters. for that step in the series. The time it takes to train 1 ANN is

Using principles from auto-context, we implemented a $eriapproximately 3-6 hours.
classifier that leverages the output of the previous netimrk An expert classified 50 images in the dataset, carefully
gain knowledge of a large neighborhood. For the first classifimarking membranes. The negative training examples are the
the input is the set of outputs from the filter bank. For theemaining pixels in the image, after morphological erodion
remaining steps, data from the stencil is gathered from themove training pixels that are very close to the membranes.
output of the previous classifier, reinforcing the membrariéhis ensures that the network learns on pixels that are mem-
structure from one classifier to the next. The input is thésrane and non-membrane, but does not become confused by
the output of the stencil applied to the context image, ampixels that are neither.
the set of filters in the original image. Figure 1 demonsgrate To test the robustness of the method, we use five fold cross-
this flow of data between classifiers. Each ANN producesvalidation on the set of 5€. elegans expert annotated EM
classification, or context image, denotédand the final output images. The 50 images are separated into groups of 10. For
is thresholded ifl” after the last ANN in the series. each fold, the network is trained on one group and tested on

By using a filter bank as the initial input, the network cathe remaining four groups. The only preprocessing perfdrme
quickly learn the context of the data it is trying to classifyfor each image is a contrast limited adaptive histogram lequa
while also acting as a regularization term for the learningation (CLAHE) [12] filter, with a window size of 64, to
algorithm. It better represents the type of data being khrn enhance the contrast of the membranes before the filter bank
With each step in our serial classifier, context allows the applied. Figure 4 shows a set of test images along with the
network to use information about structure from a broadsegmentation found using different methods. The first ntho
image neighborhood to the pixel being classified, while tt&hown in the 2nd column, performs thresholding after the
filters inputs reinforce the elongated structure of memésan contrast is enhanced and anisotropic smoothing is peridrme
This results in segmentations that improve after each nétwd he 3rd column is a segmentation similar to Mishchenko [10],
in the series. Figure 5 visually demonstrates the clasidita who learns boundary confidences using Hessian eigenvalues
improving between ANNSs in the series. Much like a conas input to a single layer neural network. Mishchenko per-
volutional network, at each stage of the series, the netwdidkkms further post-processing to interpolate between dmok
uses more context around each pixel to make a classificatibaundaries and complete contours, resulting in an improved
This means that learning and application of the classifier $¢gmentation compared to the one shown here. We compare
more efficient since one does not have to deal with larggainst only the single layer network part of his method
image features, and the network does not have the tasksifce our goal is to demonstrate the improvement achieved by
inferring the elementary structure from the dataset,fired,the the use of an ANN and auto-context. Furthermore, the same
filters. Consequently, this accounts for a smaller and ssmppreprocessing methods could be applied to the results of the
network which can be trained from smaller datasets. Overgiroposed method as well. The final column is the segmentation
our implementation also has advantages due to the usef@fnd using the serial network presented in this paper. tirier t
multiple networks. This approach provides better contifol g@articular data set, we chose a network series that comdiSts
the training, allowing the network to learn in steps, refinihne ANNs. Figure 5 shows the output between each network in the
classification at each step as the context information ileée series. At each stage, the network removes internal stegtu
correctly segment the image increases. Hence, our appi®achnd closes membrane gaps. Over several networks, thigsresul
much more attractive to train, as opposed to utilizing alsingin noticeable improvements in the membrane segmentation.
large network with many hidden layers and nodes. Using aThe receiver operating characteristic (ROC) curves in Fig-
single large network would be time consuming and difficulires 6 demonstrate the improvement in the segmentation at
to train due to the many local minima in the performancgach stage of the series. Each curve is computed by averaging
surface, and requires large training datasets which aettoar for the stage, the ROC curves over all cross-validationsiold
obtain since the ground truth must be hand labeled. Even after just one stage of the network, the classification
has improved dramatically. Further stages help to refine the
membrane locations and remove structures remaining inside
the membranes.

The ANNSs used in our tests are solved with backpropagationlt is important to compare the final neuron segmentation
using a step size 00001 and a momentum term abf. To that the different methods produce. Figure 7 demonstrates
avoid local minima in computing the best set of weights dhe differences between the segmentations using the prdpos
each series in the network, the ANN uses cross-validatioh amethod. While this segmentation is not perfect, it is a large
Monte Carlo simulations. The network is trained using crosBnprovement upon previous methods. For a complete segmen-
validation on a portion of the input data, and the networation to be possible, minor hand edits are required alottly wi

IV. RESULTS
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Fig. 4. Different membrane segmentations for four test imsagach trained using one fold from the five fold cross-aitith strategy. (a) Cross-section of
the nematodeC. elegans with a resolution of 6nmx 6nm x 33nm, acquired using EM. Three demonstrated segmenta@migues: (b) thresholding on
the CLAHE enhanced, smoothed data, (c) thresholded boyrmmfidences using Hessian eigenvalues, and (d) the prdpuoséhod, serial ANNSs, trained
using membrane filter banks and auto-context.
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Fig. 5. An example of an image in each stage (1-4) of the nétweries. At each stage, the network learns more about pixatsdo and do not belong
to the membrane. The top row is the output from the neural artwand the bottom row is the thresholded output.

ROC Curve for Training Data on a Serial Neural Network
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Fig. 6. ROC curves for the (a) training data and (b) testinta dd each stage of the series. For comparison, ROC curvemduneled for anisotropic
smoothing combined with thresholding and learned bourdarsing Hessian eigenvalues, as demonstrated in Figureddb(c).
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Fig. 7. Simple segmentation of neurons using a flood-fill ontlfa ground truth and (b) the membranes detected in Figute dhich uses the proposed

method.

some region closing techniques to be considered as futuig
work.
[3]
V. CONCLUSION AND FUTURE WORK

In this paper we propose the combined use of filter banks,
principles from auto-context, and a series of ANNs for the*
segmentation of neuron membranes in EM images. On one
hand, the application of filters to the input data and a stenci
to the output of each classifier gives context for the clagdifi
use to close gaps in membranes and remove internal stracture
On the other hand, both the filters and serial ANN architecturl6]
in the framework act as regularization terms, forcing the
network to learn incrementally, using features that makeh t
data on multiple context scales provided by each step. [71

In spite of the specificity of this application, the concepts
and framework proposed may be potentially useful in other
domains. For example, similar strategies could also provél
successful in segmenting long tubular structures such ss va
culature in MRI, due to the capability of closing gaps in weakg
areas of elongated structures.
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