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Abstract:

Study of nervous systems via the connectome, i.e. the map connectivities of all neurons in that sys-
tem, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large
electron microscopy datasets. Automated image analysis methods are required for reconstructing
the connectome from these very large image collections. Segmentation of neurons in these images,
an essential step of the reconstruction pipeline, is challenging because of noise, irregular shapes and
brightness, and the presence of confounding structures. The method described in this paper uses a
carefully designed set of filters and a series of artificial neural networks (ANNs) in an auto-context
architecture to detect neuron membranes. Employing auto-context means that several ANNs are
applied in series while allowing each ANN to use the classification context provided by the previous
network to improve detection accuracy. We use the responses to a set of filters as input to the
series of ANNs and show that the learned context does improve detection over traditional ANNs.
We also demonstrate advantages over previous membrane detection methods. The results are a
significant step towards an automated system for the reconstruction of the connectome.
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Abstract

Study of nervous systems via the connectome, i.e. the map connectivities of
all neurons in that system, is a challenging problem in neuroscience. Towards this
goal, neurobiologists are acquiring large electron microscopy datasets. Automated
image analysis methods are required for reconstructing theconnectome from these
very large image collections. Segmentation of neurons in these images, an essen-
tial step of the reconstruction pipeline, is challenging because of noise, irregular
shapes and brightness, and the presence of confounding structures. The method
described in this paper uses a carefully designed set of filters and a series of ar-
tificial neural networks (ANNs) in an auto-context architecture to detect neuron
membranes. Employing auto-context means that several ANNsare applied in se-
ries while allowing each ANN to use the classification context provided by the
previous network to improve detection accuracy. We use the responses to a set
of filters as input to the series of ANNs and show that the learned context does
improve detection over traditional ANNs. We also demonstrate advantages over
previous membrane detection methods. The results are a significant step towards
an automated system for the reconstruction of the connectome.

1 Introduction

Models of neural circuits are fundamental to the study of thecentral nervous system.
However, relatively little is known about the connectivityof neurons, and many state-
of-the-art models are insufficiently informed by anatomical ground truth. Electron
microscopy (EM) is a particularly well suited modality since it provides the neces-
sary detail for the reconstruction of large scale neural circuits, i.e., theconnectome.
However, the complexity and large number of images makes human interpretation an
extremely labor intensive task. A number of researchers have undertaken extensive EM
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Figure 1: Serial neural network. I: Input, F: filter bank, S: neighborhood stencil, C:
context image, T: threshold.

imaging projects in order to create detailed maps of neuronal structure and connectiv-
ity [12, 3, 2]. A significant portion of neural circuit reconstruction research has focused
on the nematodeC. elegans which has only 302 neurons and is one of the simplest or-
ganisms with a nervous system. In spite of its simplicity, the manual reconstruction
effort is estimated to have taken more than a decade. Newer imaging techniques are
providing even larger volumes from more complex organisms,further complicating the
circuit reconstruction process [1]. There is a need for algorithms that are sufficiently
robust for segmenting neurons with little or no user intervention.

Segmentation of neurons from EM is a difficult task. The quality and noise in the
image can vary depending on the thickness of the EM sections causing the membranes
to change in intensity and contrast. In addition, intracellular structures such as mi-
tochondria and synaptic vesicles render intensity thresholding methods ineffective for
isolating cell membranes (Figure 4(b)). The method described in this paper uses a se-
ries of artificial neural networks (ANNs) to more accuratelydetect membranes in EM
images, which is a necessary step for improved three-dimensional neuron segmenta-
tion. The first ANN uses as input a bank of oriented filters thatwere designed to match
membranes. The input to the subsequent ANNs in the series is the same set of filters
responses, in addition to the output of the previous ANN on a stencil of nearby pixels
(as depicted in Figure 1). The idea is that ANNs along the series are able to conciliate
context information about likely classifications of pixelsacross the image.

2 Background

There are several methods that attempt to segment EM images of neural tissue. Simple
thresholding methods can be applied after isotropic or anisotropic smoothing [10, 6],
but these fail to remove internal cellular structures and simultaneously detect a suffi-
ciently high percentage of the true membranes to make accurate segmentations. While
active contours, in both parametric and level set forms [5, 7], can provide smooth,
accurate segmentations, they require an initialization and are more appropriate for seg-
menting a few cells. If the goal is the automatic segmentation of hundreds or thousands
of cells, manual initialization is not practical, and an automatic initialization is as diffi-
cult as isolating the individual cells—which is the purposeof this work.

In related work, Jainet al. used a multilayer convolutional ANN to classify pixels
as membrane or non-membrane in specimens prepared with an extracellular stain [4].
This stain however greatly increases the contrast between the cell boundaries and intra-
cellular structures, and therefore significantly simplifies the segmentation task. On the
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Figure 2: Stencil neighborhood of size11 × 11 pixels is used on the output of each
ANN to gather context on the output of the ANN.

other hand, neural circuit reconstruction also requires the detection of synapses, which
is only directly possible when intracellular structures are observed and thus cannot be
obtained through the previous approach. Furthermore, the ANN approach by Jainet
al. contains more than 30,000 parameters and, therefore, is computationally intensive
and requires very large training sets. On the other extreme,even a perceptron applied
to a carefully chosen set of features has been shown to provide reasonable results in
identifying membranes in EM images [8]. Nevertheless, thismethod still requires sig-
nificant post processing to connect membranes and remove internal cellular structures.
In Jurruset al. [6], a contrast enhancing filter followed by a directional diffusion filter
is applied to the raw images to enhance and connect cellular membranes. The images
are then thresholded and neuron membranes are identified using a watershed segmenta-
tion method. An optimal path computation is performed to join segments across slices,
resulting in a segmentation in three dimensions.

Of conceptual relevance to this work is Tu’s auto-context method [11], which uses
a series of classifiers utilizing contextual inputs to classify pixels in images. In Tu’s
method, the “continuous” output of a classifier, consideredas a probability map, and
the original set of features are used as inputs to the next classifier. The probability
map values from the previous classifiers provide context forthe classifier, by using
a feature set that consists of samples of the probability mapat a large neighborhood
around each pixel. Each subsequent classifier extends the influence of the probability
map in a nonlinear way, and thus the system can learn the context, or shapes, associated
with a pixel classification problem. Theoretically, the series of classifiers improves an
approximation of a posteriori distribution [11].

3 Method

The method for membrane segmentation developed here combines the responses from
a filter bank designed to match membranes with a series of ANNsfor auto-context [11].
Auto-context learns from image features computed at local pixels and a classification
map applied to the classifier output. The classification map is a stencil placed over each
pixel containing information about the features in surrounding pixels, that is not rep-
resented in the original feature set (Figure 2). This allowsthe networks at subsequent
steps of the series, show in Figure 1, to make decisions aboutthe membrane classifica-
tion utilizing nonlocal information. Put differently, each stage in the series accounts for
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Figure 3: (a) Membrane, (b) junction, and (c) vesicle detection filters used for input
into the neural network.

larger structures in the data, taking advantage of results from all the previous networks.
The advantages of this architecture are shown later for closing of weak membranes and
removal of intracellular structures after each iteration in the series. Combining the orig-
inal filter responses with features from the output of the classifier is important because,
in this way, the relevant membrane structure for segmentation is enforced locally and
then again at a higher level from each step in the series of classifiers.

Given the success of ANNs for membrane detection [8, 4] and because auto-context
is not specifically tied to any classifier, we implement a multilayer perceptron (MLP)
ANN as our base classifier. An MLP is a feed-forward network which approximates
a boundary with the use of ridges given by the nonlinearity ateach node. In our case,
each network has one hidden layer with 20 nodes. Although we experimented with the
use of two hidden layers, no advantage was observed. The output of each node is given
as,y = f(wT

x+ b), wheref is in our case thetanh nonlinearity,x denotes the inputs,
w is the weight vector, andb is a bias term. The inputs to the first network include the
image intensity and the response to a bank of feature detection filters, described next.

The image features the first ANN uses to learn are membrane andvesicle detection
filters. We chose to use filters to detect features and train the network rather than
learning the filters because we have prior knowledge about the membrane geometry and
can design a match filter to detect them. Three types of feature detection filters were
constructed to generate responses for the different types of membranes (see Figure 3).
The first and second filter types are both bars, one to detect membranes and the other
to detect membrane junctions. The width of the bar approximates the width of the
membrane, which in our case is about 5-7 pixels wide. To detect membranes at different
angles, each filter is rotated between 0 and 180 by20◦. The third filter type is a simple
vesicle detection filter which helps the network learn pixels it should not classify as
membranes, i.e., for rejecting vesicles. It is constructedas a circle with an off center
surround ranging in radius depending on the size of the vesicles in the images. For the
data utilized, the radius varies between 3 and 5 pixels. Eachfilter is convolved with
each pixel in the image:Ii = I ∗ Fi, whereI is the input image andFi is theith filter
convolved withI. The complete filter bank,F , contains the membrane and junction
filters, at rotational increments of20◦, and several scales of vesicle filters, for a total of
32 filters.

Using principles from auto-context, we implemented a serial classifier that lever-
ages the output of the previous network to gain knowledge of alarge neighborhood. For
the first classifier, the input is the set of outputs from the filter bank. For the remaining
steps, data from the stencil is gathered from the output of the previous classifier, rein-
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forcing the membrane structure from one classifier to the next. The input is then the
output of the stencil applied to the context image, and the set of filters in the original
image. Figure 1 demonstrates this flow of data between classifiers. Each ANN pro-
duces a classification, or context image, denotedC, and the final output is thresholded
in T after the last ANN in the series.

By using a filter bank as the initial input, the network can quickly learn the context
of the data it is trying to classify, while also acting as a regularization term for the
learning algorithm. It better represents the type of data being learned. With each step
in our serial classifier, context allows the network to use information about structure
from a broader image neighborhood to the pixel being classified, while the filters inputs
reinforce the elongated structure of membranes. This results in segmentations that im-
prove after each network in the series. Figure 5 visually demonstrates the classification
improving between ANNs in the series. Much like a convolutional network, at each
stage of the series, the network uses more context around each pixel to make a clas-
sification. This means that learning and application of the classifier is more efficient
since one does not have to deal with large image features, andthe network does not
have the task of inferring the elementary structure from thedataset, i.e., find the filters.
Consequently, this accounts for a smaller and simpler network which can be trained
from smaller datasets. Overall, our implementation also has advantages due to the use
of multiple networks. This approach provides better control of the training, allowing
the network to learn in steps, refining the classification at each step as the context in-
formation it needs to correctly segment the image increases. Hence, our approach is
much more attractive to train, as opposed to utilizing a single large network with many
hidden layers and nodes. Using a single large network would be time consuming and
difficult to train due to the many local minima in the performance surface, and requires
large training datasets which are hard to obtain since the ground truth must be hand
labeled.

4 Results

The ANNs used in our tests are solved with backpropagation using a step size of.0001
and a momentum term of.5. To avoid local minima in computing the best set of weights
at each series in the network, the ANN uses cross-validationand Monte Carlo simula-
tions. The network is trained using cross-validation on a portion of the input data, and
the network terminates when the cross-validation error increases for 3 consecutive iter-
ations. To compute the best set of weights, 10 Monte Carlo simulations of the network
are run, each with a different set of random weights. The weights from the network
with the highest percentage of correctly trained instancesin the cross-validation set are
used to compute the segmentation for that step in the series.The time it takes to train
1 ANN is approximately 3-6 hours.

An expert classified 50 images in the dataset, carefully marking membranes. The
negative training examples are the remaining pixels in the image, after morphological
erosion to remove training pixels that are very close to the membranes. This ensures
that the network learns on pixels that are membrane and non-membrane, but does not
become confused by pixels that are neither.
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Figure 4: Different membrane segmentations for four test images, each trained using
one fold from the five fold cross-validation strategy. (a) Cross-section of the nematode
C. elegans with a resolution of 6nm× 6nm× 33nm, acquired using EM. Three demon-
strated segmentation techniques: (b) thresholding on the CLAHE enhanced, smoothed
data, (c) thresholded boundary confidences using Hessian eigenvalues, and (d) the pro-
posed method, serial ANNs, trained using membrane filter banks and auto-context.
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Figure 5: An example of an image in each stage (1-4) of the network series. At each
stage, the network learns more about pixels that do and do notbelong to the mem-
brane. The top row is the output from the neural network, and the bottom row is the
thresholded output.

To test the robustness of the method, we use five fold cross-validation on the set of
50 C. elegans expert annotated EM images. The 50 images are separated intogroups
of 10. For each fold, the network is trained on one group and tested on the remaining
four groups. The only preprocessing performed for each image is a contrast limited
adaptive histogram equalization (CLAHE) [9] filter, with a window size of 64, to en-
hance the contrast of the membranes before the filter bank is applied. Figure 4 shows a
set of test images along with the segmentation found using different methods. The first
method, shown in the 2nd column, performs thresholding after the contrast is enhanced
and anisotropic smoothing is performed. The 3rd column is a segmentation similar to
Mishchenko [8], who learns boundary confidences using Hessian eigenvalues as input
to a single layer neural network. Mishchenko performs further post-processing to in-
terpolate between broken boundaries and complete contours, resulting in an improved
segmentation compared to the one shown here. We compare against only the single
layer network part of his method since our goal is to demonstrate the improvement
achieved by the use of an ANN and auto-context. Furthermore,the same preprocessing
methods could be applied to the results of the proposed method as well. The final col-
umn is the segmentation found using the serial network presented in this paper. For this
particular data set, we chose a network series that consistsof 5 ANNs. Figure 5 shows
the output between each network in the series. At each stage,the network removes
internal structures and closes membrane gaps. Over severalnetworks, this results in
noticeable improvements in the membrane segmentation.

The receiver operating characteristic (ROC) curves in Figures 6 demonstrate the
improvement in the segmentation at each stage of the series.Each curve is computed
by averaging, for the stage, the ROC curves over all cross-validation folds. Even after
just one stage of the network, the classification has improved dramatically. Further
stages help to refine the membrane locations and remove structures remaining inside
the membranes.

It is important to compare the final neuron segmentation thatthe different methods
produce. Figure 7 demonstrates the differences between thesegmentations using the
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Figure 6: ROC curves for the (a) training data and (b) testingdata at each stage of the
series. For comparison, ROC curves are included for anisotropic smoothing combined
with thresholding and learned boundaries using Hessian eigenvalues, as demonstrated
in Figure 4(b)and(c).

(a) (b)

Figure 7: Segmentation of neurons using a flood-fill on the image of detected mem-
branes. This image corresponds to the bottom row of Figure 5.(a) Ground truth and
(b) segmentations using membranes detected with proposed method.
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proposed method. While this segmentation is not perfect, itis a large improvement
upon previous methods. For a complete segmentation to be possible, minor hand edits
are required along with some region closing techniques to beconsidered as future work.

5 Conclusion and Future Work
In this paper we propose the combined use of filter banks, principles from auto-context,
and a series of ANNs for the segmentation of neuron membranesin EM images. On
one hand, the application of filters to the input data and a stencil to the output of each
classifier gives context for the classifier to use to close gaps in membranes and remove
internal structures. On the other hand, both the filters and serial ANN architecture in
the framework act as regularization terms, forcing the network to learn incrementally,
using features that match the data on at multiples context scales provided by each step.

In spite of the specificity of this application, the conceptsand framework proposed
may be potential useful in other domains. For example, similar strategies could also
prove successful in segmenting long tubular structures such as vasculature in MRI, due
to the capability of closing gaps in weak areas of elongated structures.
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