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Abstract:

Study of nervous systems via the connectome, i.e. the map connectivities of all neurons in that sys-
tem, is a challenging problem in neuroscience. Towards this goal, neurobiologists are acquiring large
electron microscopy datasets. Automated image analysis methods are required for reconstructing
the connectome from these very large image collections. Segmentation of neurons in these images,
an essential step of the reconstruction pipeline, is challenging because of noise, irregular shapes and
brightness, and the presence of confounding structures. The method described in this paper uses a
carefully designed set of filters and a series of artificial neural networks (ANNs) in an auto-context
architecture to detect neuron membranes. Employing auto-context means that several ANNs are
applied in series while allowing each ANN to use the classification context provided by the previous
network to improve detection accuracy. We use the responses to a set of filters as input to the
series of ANNs and show that the learned context does improve detection over traditional ANNSs.
We also demonstrate advantages over previous membrane detection methods. The results are a
significant step towards an automated system for the reconstruction of the connectome.

THEU

UNIVERSITY
OFUTAH



Serial Neural Network Classifier for Membrane
Detection using a Filter Bank.

Elizabeth Jurru?2, Antonio R. C. Paivg, Shigeki Watanable
Ross Whitaker?, Erik M. Jorgenseh Tolga Tasdizeh!
!Scientific Computing and Imaging Institute
2School of Computing, University of Utah
3Department of Biology, University of Utah
‘Department of Electrical Engineering, University of Utah

Abstract

Study of nervous systems via the connectome, i.e. the mapectnities of
all neurons in that system, is a challenging problem in retiemce. Towards this
goal, neurobiologists are acquiring large electron mioopy datasets. Automated
image analysis methods are required for reconstructinggheectome from these
very large image collections. Segmentation of neuronsésdglimages, an essen-
tial step of the reconstruction pipeline, is challengingaese of noise, irregular
shapes and brightness, and the presence of confoundirgusest The method
described in this paper uses a carefully designed set afsfited a series of ar-
tificial neural networks (ANNS) in an auto-context architee to detect neuron
membranes. Employing auto-context means that several AdM@&lapplied in se-
ries while allowing each ANN to use the classification cohfgrovided by the
previous network to improve detection accuracy. We use ¢éspanses to a set
of filters as input to the series of ANNs and show that the kedrcontext does
improve detection over traditional ANNs. We also demorstadvantages over
previous membrane detection methods. The results are icagu step towards
an automated system for the reconstruction of the connectom

1 Introduction

Models of neural circuits are fundamental to the study ofdetral nervous system.
However, relatively little is known about the connectivitiyneurons, and many state-
of-the-art models are insufficiently informed by anatorhigeound truth. Electron
microscopy (EM) is a particularly well suited modality sinit provides the neces-
sary detail for the reconstruction of large scale neuraluifs, i.e., theconnectome.
However, the complexity and large number of images makesahunterpretation an
extremely labor intensive task. A number of researchers hadertaken extensive EM
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Figure 1: Serial neural network. I: Input, F: filter bank, ®ighborhood stencil, C:
context image, T: threshold.

imaging projects in order to create detailed maps of nelinacture and connectiv-
ity [12, 3, 2]. A significant portion of neural circuit recansction research has focused
on the nematod€. elegans which has only 302 neurons and is one of the simplest or-
ganisms with a nervous system. In spite of its simplicitg thanual reconstruction
effort is estimated to have taken more than a decade. Nevaging techniques are
providing even larger volumes from more complex organigorgher complicating the
circuit reconstruction process [1]. There is a need for @tlgms that are sufficiently
robust for segmenting neurons with little or no user intatian.

Segmentation of neurons from EM is a difficult task. The gyalnd noise in the
image can vary depending on the thickness of the EM sectiaunsiitg the membranes
to change in intensity and contrast. In addition, intradeH structures such as mi-
tochondria and synaptic vesicles render intensity thrieéhg methods ineffective for
isolating cell membranes (Figure 4(b)). The method desdrih this paper uses a se-
ries of artificial neural networks (ANNSs) to more accuratédtect membranes in EM
images, which is a necessary step for improved three-diimeaisneuron segmenta-
tion. The first ANN uses as input a bank of oriented filters thate designed to match
membranes. The input to the subsequent ANNSs in the serifg isame set of filters
responses, in addition to the output of the previous ANN otead of nearby pixels
(as depicted in Figure 1). The idea is that ANNs along theesaie able to conciliate
context information about likely classifications of pixalsross the image.

2 Background

There are several methods that attempt to segment EM im&gesi@l tissue. Simple
thresholding methods can be applied after isotropic oraarupic smoothing [10, 6],
but these fail to remove internal cellular structures amdutianeously detect a suffi-
ciently high percentage of the true membranes to make aecsegmentations. While
active contours, in both parametric and level set forms [5c@n provide smooth,
accurate segmentations, they require an initializatiahaae more appropriate for seg-
menting a few cells. If the goal is the automatic segmemaifdiundreds or thousands
of cells, manual initialization is not practical, and anauatic initialization is as diffi-
cult as isolating the individual cells—which is the purpoa$¢his work.

In related work, Jairt al. used a multilayer convolutional ANN to classify pixels
as membrane or non-membrane in specimens prepared withragedular stain [4].
This stain however greatly increases the contrast betvweeretl boundaries and intra-
cellular structures, and therefore significantly simpdifiee segmentation task. On the



Figure 2: Stencil neighborhood of sizé x 11 pixels is used on the output of each
ANN to gather context on the output of the ANN.

other hand, neural circuit reconstruction also requiresiitection of synapses, which
is only directly possible when intracellular structures abserved and thus cannot be
obtained through the previous approach. Furthermore, tild Approach by Jaiet
al. contains more than 30,000 parameters and, therefore, iputationally intensive
and requires very large training sets. On the other extrenen a perceptron applied
to a carefully chosen set of features has been shown to rogmsonable results in
identifying membranes in EM images [8]. Nevertheless, tinéthod still requires sig-
nificant post processing to connect membranes and remar@aticellular structures.
In Jurruset al. [6], a contrast enhancing filter followed by a directiondfusion filter
is applied to the raw images to enhance and connect cell@athranes. The images
are then thresholded and neuron membranes are identifigglaigiatershed segmenta-
tion method. An optimal path computation is performed to gggments across slices,
resulting in a segmentation in three dimensions.

Of conceptual relevance to this work is Tu’s auto-contexthoe [11], which uses
a series of classifiers utilizing contextual inputs to dfgggixels in images. In Tu's
method, the “continuous” output of a classifier, considexe@ probability map, and
the original set of features are used as inputs to the nessifiler. The probability
map values from the previous classifiers provide contexttierclassifier, by using
a feature set that consists of samples of the probability ataplarge neighborhood
around each pixel. Each subsequent classifier extendsftherine of the probability
map in a nonlinear way, and thus the system can learn thextpateshapes, associated
with a pixel classification problem. Theoretically, theissrof classifiers improves an
approximation of a posteriori distribution [11].

3 Method

The method for membrane segmentation developed here cesthia responses from
a filter bank designed to match membranes with a series of AbiNaito-context [11].
Auto-context learns from image features computed at loos@lpand a classification
map applied to the classifier output. The classification rea@wsitencil placed over each
pixel containing information about the features in surming pixels, that is not rep-
resented in the original feature set (Figure 2). This alldvesnetworks at subsequent
steps of the series, show in Figure 1, to make decisions dhemembrane classifica-
tion utilizing nonlocal information. Put differently, elastage in the series accounts for
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Figure 3: (a) Membrane, (b) junction, and (c) vesicle dédecfilters used for input
into the neural network.

larger structures in the data, taking advantage of reswits &ll the previous networks.
The advantages of this architecture are shown later fomgaxf weak membranes and
removal of intracellular structures after each iteratiothie series. Combining the orig-
inal filter responses with features from the output of thesiféer is important because,
in this way, the relevant membrane structure for segmemtasi enforced locally and
then again at a higher level from each step in the series séifilers.

Given the success of ANNs for membrane detection [8, 4] andumee auto-context
is not specifically tied to any classifier, we implement a itayer perceptron (MLP)
ANN as our base classifier. An MLP is a feed-forward networkclwtapproximates
a boundary with the use of ridges given by the nonlineariwaath node. In our case,
each network has one hidden layer with 20 nodes. Althoughiperenented with the
use of two hidden layers, no advantage was observed. Thataftpach node is given
as,y = f(wI'x+0b), wheref is in our case th&anh nonlinearityx denotes the inputs,
w is the weight vector, andlis a bias term. The inputs to the first network include the
image intensity and the response to a bank of feature detefitiers, described next.

The image features the first ANN uses to learn are membraneemicle detection
filters. We chose to use filters to detect features and tramttwork rather than
learning the filters because we have prior knowledge abeutigmbrane geometry and
can design a match filter to detect them. Three types of featetection filters were
constructed to generate responses for the different tyjpmembranes (see Figure 3).
The first and second filter types are both bars, one to detaotmames and the other
to detect membrane junctions. The width of the bar approtemthe width of the
membrane, which in our case is about 5-7 pixels wide. To detembranes at different
angles, each filter is rotated between 0 and 18025y The third filter type is a simple
vesicle detection filter which helps the network learn pxglshould not classify as
membranes, i.e., for rejecting vesicles. It is construeted circle with an off center
surround ranging in radius depending on the size of the kessiic the images. For the
data utilized, the radius varies between 3 and 5 pixels. Hhehis convolved with
each pixel in the imagef; = I x F;, wherel is the input image and; is thesth filter
convolved with/. The complete filter banki’, contains the membrane and junction
filters, at rotational increments @6°, and several scales of vesicle filters, for a total of
32 filters.

Using principles from auto-context, we implemented a $etassifier that lever-
ages the output of the previous network to gain knowledgdarf neighborhood. For
the first classifier, the input is the set of outputs from therfibank. For the remaining
steps, data from the stencil is gathered from the outputeptlvious classifier, rein-



forcing the membrane structure from one classifier to the.n€lxe input is then the
output of the stencil applied to the context image, and thefkiters in the original
image. Figure 1 demonstrates this flow of data between &ikxssi Each ANN pro-
duces a classification, or context image, dendgiednd the final output is thresholded
in T after the last ANN in the series.

By using a filter bank as the initial input, the network canafflyi learn the context
of the data it is trying to classify, while also acting as aulagization term for the
learning algorithm. It better represents the type of datagkearned. With each step
in our serial classifier, context allows the network to uderimation about structure
from a broaderimage neighborhoodto the pixel being claskifihile the filters inputs
reinforce the elongated structure of membranes. Thistesusegmentations that im-
prove after each network in the series. Figure 5 visuallyaestrates the classification
improving between ANNSs in the series. Much like a convolaéibnetwork, at each
stage of the series, the network uses more context aroumdp®es to make a clas-
sification. This means that learning and application of tlassifier is more efficient
since one does not have to deal with large image featuresthandetwork does not
have the task of inferring the elementary structure frondidaset, i.e., find the filters.
Consequently, this accounts for a smaller and simpler métwhich can be trained
from smaller datasets. Overall, our implementation alsodtvantages due to the use
of multiple networks. This approach provides better cdrdfdghe training, allowing
the network to learn in steps, refining the classificationsahestep as the context in-
formation it needs to correctly segment the image increadesice, our approach is
much more attractive to train, as opposed to utilizing alsitayge network with many
hidden layers and nodes. Using a single large network woeiltinbe consuming and
difficult to train due to the many local minima in the performea surface, and requires
large training datasets which are hard to obtain since thargt truth must be hand
labeled.

4 Results

The ANNSs used in our tests are solved with backpropagatimgw@sstep size 0001
and a momentum term di. To avoid local minima in computing the best set of weights
at each series in the network, the ANN uses cross-validatiahVonte Carlo simula-
tions. The network is trained using cross-validation on dipo of the input data, and
the network terminates when the cross-validation erraeiases for 3 consecutive iter-
ations. To compute the best set of weights, 10 Monte Carlalsitions of the network
are run, each with a different set of random weights. The ksifrom the network
with the highest percentage of correctly trained instantése cross-validation set are
used to compute the segmentation for that step in the sdrestime it takes to train
1 ANN is approximately 3-6 hours.

An expert classified 50 images in the dataset, carefully mgnkembranes. The
negative training examples are the remaining pixels inniege, after morphological
erosion to remove training pixels that are very close to tleentiranes. This ensures
that the network learns on pixels that are membrane and renbrane, but does not
become confused by pixels that are neither.



@ (b) (©) )

Figure 4: Different membrane segmentations for four testges, each trained using

one fold from the five fold cross-validation strategy. (ap&3-section of the nematode
C. eleganswith a resolution of 6nnx 6nm x 33nm, acquired using EM. Three demon-
strated segmentation techniques: (b) thresholding on tHeHE enhanced, smoothed

data, (c) thresholded boundary confidences using Hesgjanlues, and (d) the pro-

posed method, serial ANNSs, trained using membrane filtek$and auto-context.
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Figure 5: An example of an image in each stage (1-4) of the orétaeries. At each
stage, the network learns more about pixels that do and dbeiohg to the mem-
brane. The top row is the output from the neural network, &eddiottom row is the
thresholded output.

To test the robustness of the method, we use five fold crdgtatian on the set of
50 C. elegans expert annotated EM images. The 50 images are separategroups
of 10. For each fold, the network is trained on one group astkteon the remaining
four groups. The only preprocessing performed for each @nag contrast limited
adaptive histogram equalization (CLAHE) [9] filter, with andow size of 64, to en-
hance the contrast of the membranes before the filter bamplged. Figure 4 shows a
set of test images along with the segmentation found usifeyeit methods. The first
method, shown in the 2nd column, performs thresholding #ftecontrast is enhanced
and anisotropic smoothing is performed. The 3rd column isgentation similar to
Mishchenko [8], who learns boundary confidences using ldassigenvalues as input
to a single layer neural network. Mishchenko performs ferrfost-processing to in-
terpolate between broken boundaries and complete contestdting in an improved
segmentation compared to the one shown here. We comparestgaly the single
layer network part of his method since our goal is to demanstthe improvement
achieved by the use of an ANN and auto-context. Furtherntloeesame preprocessing
methods could be applied to the results of the proposed methavell. The final col-
umn is the segmentation found using the serial network pteden this paper. For this
particular data set, we chose a network series that congiSt&NNs. Figure 5 shows
the output between each network in the series. At each sthgaetwork removes
internal structures and closes membrane gaps. Over sevavebrks, this results in
noticeable improvements in the membrane segmentation.

The receiver operating characteristic (ROC) curves in g demonstrate the
improvement in the segmentation at each stage of the sé&&h curve is computed
by averaging, for the stage, the ROC curves over all crobdateaon folds. Even after
just one stage of the network, the classification has imgtaramatically. Further
stages help to refine the membrane locations and removéwsgaazemaining inside
the membranes.

It is important to compare the final neuron segmentationttiedifferent methods
produce. Figure 7 demonstrates the differences betweesetiraentations using the



ROC Curve for Training Data on a Serial Neural Network ROC Curve for Test Data on a Serial Neural Network
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Figure 6: ROC curves for the (a) training data and (b) tedfiaig at each stage of the
series. For comparison, ROC curves are included for aoigictsmoothing combined
with thresholding and learned boundaries using Hessianeaues, as demonstrated
in Figure 4(b)and(c).

Figure 7: Segmentation of neurons using a flood-fill on thegienaf detected mem-
branes. This image corresponds to the bottom row of Figui@pGround truth and
(b) segmentations using membranes detected with propostitbth



proposed method. While this segmentation is not perfeds, at large improvement
upon previous methods. For a complete segmentation to eieaninor hand edits
are required along with some region closing techniques tmhsidered as future work.

5 Conclusion and Future Work

In this paper we propose the combined use of filter bankscipies from auto-context,
and a series of ANNSs for the segmentation of neuron membiiaries! images. On
one hand, the application of filters to the input data and recditéo the output of each
classifier gives context for the classifier to use to closesgamembranes and remove
internal structures. On the other hand, both the filters anidISANN architecture in
the framework act as regularization terms, forcing the netvto learn incrementally,
using features that match the data on at multiples contel@sgrovided by each step.

In spite of the specificity of this application, the concegusl framework proposed
may be potential useful in other domains. For example, ainstrategies could also
prove successful in segmenting long tubular structurels aswasculature in MRI, due
to the capability of closing gaps in weak areas of elongaredsires.
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