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Abstract. Many Brain Machine Interfaces’ (BMIs) decoding algorithms estimate hand 

movement from binned spike rates, which do not fully exploit the resolution contained in 

spike timing and may exclude rich neural dynamics from the modeling. More recently, an 

adaptive filtering method based on a Bayesian approach to reconstruct the neural state 

from the observed spike times has been proposed. However, it assumes and propagates a 

Gaussian distributed state posterior density, which is in general too restrictive. We have 

also proposed a Sequential Monte Carlo estimation methodology to reconstruct the 

kinematic states directly from the multi-channel spike trains. This paper presents a 

systematic testing of this algorithm in a simulated neural spike train decoding experiment 

and then in BMI data. Compared to a point process adaptive filtering algorithm with a 

linear observation model and a Gaussian approximation (the counterpart for point 
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processes of the Kalman filter), our Sequential Monte Carlo Estimation methodology 

exploits a detailed encoding model (tuning function) derived for each neuron from 

training data. However, this added complexity is translated in higher performance with 

real data. To deal with the intrinsic spike randomness in online modeling, several 

synthetic spike trains are generated from the intensity function estimated from the 

neurons and utilized as extra model inputs in an attempt to decrease the variance in the 

kinematic predictions. The performance of the Sequential Monte Carlo Estimation 

methodology augmented with this synthetic spike input provides improved 

reconstruction, which raises interesting questions and helps understand the overall 

modeling requirements better.   

1. Introduction 

Brain-Machine Interfaces (BMIs) exploit the spatial and temporal structure of neural 

activity to directly control a prosthetic device. In this framework [Wessberg, Stambaugh, 

Kralik, Beck, Laubach, Chapin, Kim, Biggs, Srinivasan, & Nicolelis, 2000; Serruya, 

Hatsopoulos, Paninski, Fellows, & Donoghue, 2002], neuronal activity (local field 

potentials and single unit activity) has been synchronously collected from microelectrode 

arrays implanted into multiple cortical areas while animals and humans have performed 

3-D or 2-D target-tracking tasks. Several signal-processing approaches have been applied 

to extract the functional relationship between neural recordings and the animal’s 

kinematic trajectories [Wessberg et al. 2000, Sanchez, Kim, Erdogmus, Rao, Principe, 

Wessberg, & Nicolelis, 2002; Kim, Sanchez, Erdogmus, Rao, Wessberg, Principe, & 

Nicolelis, 2003; Wu, Gao, Bienenstock, Donoghue, & Black, 2006; Brockwell, Rojas, & 
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Kaas, 2004; Shoham, Paninski, Fellows, Hatsopoulos, Donoghue, & Normann, 2005; 

ErgunBarbieri, Eden, Wilson, & Brown, 2007; Yu, Kemere, Santhanam, Afshar, Ryu., 

Meng, Sahani, & Shenoy, 2007; Srinivasan, Eden, Mitter, & Brown, 2007]. The models 

predict movements and control a prosthetic robot arm or computer to implement them. 

Many decoding methodologies use binned spike trains to predict movement based on 

linear or nonlinear optimal filters [Wessberg et al. 2000, Sanchez et al. 2002, Kim et al. 

2003]. These methods avoid the need for explicit knowledge of the dynamical neural 

encoding properties, and standard linear or nonlinear regression fits the relationship 

directly into the decoding operation. Yet another probabilistic methodology can be 

derived probabilistically using a state-space model within a Bayesian formulation 

[Schwartz, Taylor, & Tillery, 2001; Wu et al., 2006; Brockwell et al., 2004; Shoham et al. 

2005; Yu et al., 2007; Srinivasan et al., 2007]. From a sequence of noisy observations of 

the neural activity, the probabilistic approach analyzes and infers the kinematics as a state 

variable of the neural dynamical system. Since neural tuning relates the measurement of 

the neural activity to the animal’s behavior, a physiologically realistic observation 

measurement model can be build. Consequently, a recursive algorithm based on all 

available statistical information will construct the posterior probability density function 

of each kinematic state given the neuron activity at each time step from the prior density 

of the state. The prior density in turn becomes the posterior density of previous time step 

updated with the discrepancy between an observation model and the neuron firings. 

Movements can be recovered probabilistically from the multi-channel neural recordings 

by estimating the posterior density. One of the general assumptions in these state-space 

models is that the model is linear and the posterior density is Gaussian, such as in the 
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Kalman filter as implemented in the free-arm-movement models [Wu et al., 2006], and 

the mixture-of-trajectories model [Yu et al., 2007]. Bootstrap filters overcome this 

assumption by Monte Carlo sampling of the posterior density and have been applied in 

motor BMIs using spike rates [Brockwell et al., 2004; Shoham et al. 2005], i.e. an 

instantaneous estimator of the neuron’s intensity function. 

The previous algorithms do not exploit spike timing structure due to binning (i.e. 

counting spikes on a time window) and may exclude rich neural dynamics in the 

modeling. One reason for this limitation is that these algorithms are designed for 

continuous random valued observations, and cannot be applied directly to point processes. 

Indeed, a spike train is a realization of a point process and is completely specified by the 

spike times; therefore the information is contained solely in the signal time structure 

[Brown et al. 1998, Barbieri et al. 2004; Eden et al. 2004; Ergun et al. 2007]. The 

fundamental question on how to adapt the Bayesian sequential estimation models to point 

processes can be answered by working with the probability of neural firing in a much 

shorter interval (~ 10 msec), which is a continuous random variable. Researchers used the 

well accepted Poisson model of spike generation [Tuckwell 1988; Rieke, Warland, 

Steveninck, & Bialek, 1997; Gabbiani & Koch 1998; and Reich, Victor, & Knight, 1998], 

making the firing rate dependent upon the system state. The Poisson distribution 

assumption is very common because it has been validated in numerous experimental 

setups, but it cannot account for multimodal firing histograms that are often found in 

neurons. The Poisson model has been improved with a time varying mean to yield what is 

called the inhomogeneous Poisson model [Gabbiani et al. 1998, Shadlen & Newsome 

1998].  
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 Initially, Diggle and colleagues [Diggle, Liang, & Zeger 1995] mentioned estimation 

from point process observations without a specific algorithm. Chan and Ledolter [1995] 

proposed a Monte Carlo Expectation-maximization (EM) algorithm using the Markov 

Chain sampling technique to calculate the expectation in the E-step of the EM algorithm. 

This method later became the theoretical basis to derive an EM algorithm for a point 

process recursive nonlinear filter [Smith & Brown, 2003]. The algorithm combined the 

inhomogeneous Poisson model on point process with the fixed interval smoothing 

algorithm to maximize the expectation of the complete data log likelihood. In this 

particular case, the observation process is a realization of a point process from an 

exponential family and the natural parameter is modeled as a linear function of the latent 

process.  

A general adaptive filtering paradigm for point processes was recently proposed in 

[Brown, Nguyen, Frank, Wilson, & Solo, 2001] to reconstruct the hand position from the 

discrete observation of neural firings. This algorithm modeled the neural spike train as a 

history-dependent generalization of the inhomogeneous Poisson rate function [Eden et al. 

2004, Daley & Vere-Jones, 1988] feeding a kinematic model through a nonlinear tuning 

function. The point process counterparts of the extended Kalman filter, recursive least 

squares, and steepest descent algorithms were derived and recently compared in the 

decoding of tuning parameters and states from the ensemble neural spiking activity [Eden, 

Frank, Solo, & Brown et al, 2004]. The stochastic state point process filter performs the 

best, because it provides an adjustable step size to update the state, which is estimated 

from the covariance information. However, this method still assumes that the posterior 

density of the state vector given the discrete observation is Gaussian distributed, which is 
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rather unlikely for a nonlinear system. More recently in [Ergun et al. 2007] the proposed 

prior density (where the particles are sampled from) is still assumed Gaussian distributed, 

although the propagation along time of the posterior is unconstrained. We proposed 

[Wang, Paiva, & Principe, 2006] a probabilistic filtering algorithm to reconstruct the state 

from the discrete observation (spiking events) by generating a sequential set of samples 

to estimate the distribution of the state posterior density without the Gaussian assumption. 

The posterior density is non-parametrically reconstructed, propagated and revised by the 

coming spike observation over time. The state at each time is determined either using the 

maximum a posteriori method or by collapsing the reconstructed posterior density using a 

Gaussian approximation of the posterior.  

This paper further develops this algorithm in section 2 and builds an adaptive signal 

processing framework for Brain Machine Interfaces working directly in the spike domain, 

overcoming the issue of specifying the window size for binning. Such algorithm can be 

implemented online to reconstruct the kinematics from the neuron spike train 

observations. Section 3 illustrates the performance of both algorithms in a simulated 

neuron decoding example. We then apply this algorithm to predict the kinematics directly 

from spike trains for a Brain Machine Interface application. The kinematics 

reconstruction results are presented and compared with the point process analogue of the 

Kalman filter. This class of real-time spike domain algorithms produces results that are 

themselves stochastic processes because of the Poisson assumption to generate the spike 

timings in the encoding model. By creating artificial point processes with the same 

intensity function as the incoming spike trains, averaging across the population is 

possible. Unexpectedly, the trajectory fitting performance improved, which means that 
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for this motor task the variability of the filter response caused by the stochasticity in 

spike timing is more detrimental to performance than averaging the actual spike timings 

thru the intensity function. The impact of this finding for spike modeling in motor BMIs 

is addressed in the discussion and conclusion.  

2. Theory 

In this section, the design of adaptive filters for point processes under the Gaussian 

assumption is reviewed, and then the proposed methodology of a Sequential Monte Carlo 

(SMC) estimation is presented. 

2.1 Adaptive Filtering for Point Processes with a Gaussian Assumption 

One can model a point process using a Bayesian approach to estimate the system state 

by evaluating the posterior density of the state given the discrete observation [Eden et al. 

2004]. This framework provides a nonlinear time-series probabilistic model between the 

state and the spiking event [Brown, Frank, Tang, Quirk, &Wilson 1998]. 

Given an observation interval ,  is defined as the counting process of 

events giving the total number of neuron spikes in the interval , for . It can 

be modeled as an inhomogeneous Poisson process characterized by its conditional 

intensity function 
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Orelationship between the Poisson process conditional intensity function , the state , 

and the parameter is assumed to be a nonlinear observation model represented by 
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The nonlinear function  is assumed to be known or specified according to the 

application. Let us consider hereafter the parameters  as part of the state vector . 

Due to the Poisson assumption, the observation model is memoryless (i.e. it has no 

dependence on the previous discrete observations).  
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The previous continuous model can be converted to a discrete model with the 

individual time steps represented by , where all the continuous value of the state 

and parameters are index with k. Given a binary observation vector  for multi-

neurons over the time interval , the posterior density of the whole state vector 

at time  given the history 
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where  is the probability of observing spikes in the interval . 

Considering the Poisson process made on the conditional intensity function, it is 

simplified as , which is defined as 
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and  is the one-step prediction density given by the Chapman-Kolmogorov 

equation  

)|( 1�kkp Zx
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where the state  evolves according to the linear relation kx
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kkkk F K� �1xx      (6) 

kF  is the state evolution model represented by a D by D matrix, where D is the 

dimension of the state vector . It establishes the dependence on the previous state and kx

kK  is zero-mean white noise with covariance . Substituting equations (4) and (5) in 

(3), the posterior density of the state 

kQ

),|( 1�' kkk Np Zx  can be recursively estimated from 

the previous value based on the spike observation.  

Given observations modeled as a point process, the solution to the Chapman-

Kolmogorov equations can be computed using a number of methods. In general, the 

update equations for the Gaussian approximation are non-linear (for example, the 

observation model defined in equation 2) and have to be solved at each step using a 

Newton's procedure to find the Gaussian approximation.  In [Eden et al. 2004],  the 

posterior density given by (3) and the noise term kK  in the state evolution equation (6) 

are assumed Gaussian distributed, for which the Chapman-Kolmogorov equation (5) 

becomes a convolution of two Gaussian functions. Under these assumptions, the 

estimation of the state at each time has a closed form expression given by (see [Eden et 

al. 2004] for details). 
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The Gaussian assumption becomes a simplifying assumption that allows an analytical 

solution for (5) and therefore, for a closed form solution of (3) as (7). 

Although the above set of equations may seem daunting they can be interpreted quite 

easily. First, (7a) establishes a prediction for the state based on the previous value. Then, 

(7b) and (7c) are used in (7d) to correct the previous estimate, after which the recursive 

calculation is repeated. 

2.2 Sequential Monte Carlo Estimation for Point Processes 

The Gaussian assumption applied to the posterior distribution in the algorithm is 

usually used as an approximation in practical situations; however, it is not a general case 

when the posterior distribution is multi-mode or highly skewed. Therefore, for the 

discrete observations case, a non-parametric approach is developed here which poses no 

constraints on the form of the posterior density. 

Sequential Monte Carlo estimation [Doucet, de Freitas, & Gordon 2001] is a well 

known technique for implementing a recursive Bayesian filter by Monte Carlo 

simulations. The key idea is to construct the posterior density function required for 

Bayesian estimation from a set of random samples with associated weights and to 

calculate the estimations based on these weighted samples. As the number of samples 

increases, this Monte Carlo characterization becomes an equivalent representation of the 

posterior pdf. Here we apply this approach directly on discrete observations in the spike 

domain. 

Suppose at time instant k the previous system state is . All we need is to estimate 

the state from the conditional intensity function, since the nonlinear relation  in (2) is 

assumed known. Random state samples are generated using Monte Carlo simulations 

1�kx

)(�f
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[Carpenter, Clifford, & Fearnhead, 1999] in the neighborhood of the previous state 

according to (6). Then, Parzen windowing [Parzen 1962] with a Gaussian kernel 

estimates the posterior density. Due to the linearity of the integral in the Chapman-

Kolmogorov equation and the weighted sum of Gaussians centered at the samples we are 

still able to evaluate the integral directly from samples. The process is recursively 

repeated for each time instant propagating the estimate of the posterior density as the 

prior density for the next time instant, and the state itself, based on the discrete events 

over time. Notice that due to the recursive approach the algorithm not only depends on 

the previous observation, but also on the whole history of the spike observation events 

that were involved in estimating the posterior density. 

Let  denote a random measure [Arulampalam, Maskell, Gordon, & 

Clapp, 2002] of the posterior density , where  is the set of 

all state samples up to time k with associated normalized weights , i is 

the sample index and  is the number of samples generated at each time,  is the 

spike observation events up to time k modeled by an inhomogeneous Poisson Process as 

in section 2.1 Then, the posterior density at time k can be approximated by a weighted 

convolution of the samples with a Gaussian kernel as 
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where ),( Vxxk �  is the Gaussian kernel with mean x  and covariance V . According to 

the principle of Importance Sampling [Bergman 1999; Doucet 1998; Doucet et al. 2001], 

the weights can be defined by  
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where  is a proposed importance density from where all  samples  are 

generated from. Here, we assume the importance density obeys the properties of 

Markov Chains, which only depends on and , such that  
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At each iteration, the posterior density  can be estimated from the 

previous iteration according to Bayes rule and the properties of Markov Chains as: 
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Both terms are simplified in the weight updating equation (9) by the recursive 

presentation (10) and (11), therefore, the weight can be updated recursively as (12): 
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Frequently the importance density  is chosen to be the prior 

density , requiring the generation of new samples from  by (6) as 

a prediction stage, where the noise is randomly drawn according to the noise distribution 
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)(Kp . The weight is then updated recursively with the information from the current 

observation . )|( i

kkNp x'

After the algorithm is applied for a few iterations, a phenomenon called degeneracy 

may arise, where all but one sample have negligible weight [Doucet, et al, 2001], 

implying that a large computational effort is taken to update the samples that have almost 

no contribution to estimate the posterior density. When a significant degeneracy appears, 

resampling is applied to eliminate the samples with small weight and to concentrate on 

samples with large weights according the samples cdf. Here Sequential Importance 

Resampling [Gordon, Salmond, & Smith 1993] is applied at every time index to avoid 

degeneration, so that the sample is i.i.d. from the discrete uniform density with weights 

SN
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where  is defined by equation (4) in this section. Using (6), (13) and the 

resampling step, the posterior density of the state  given the whole path of the 

observed events up to time  can be approximated as  
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Equation (14) shows that the posterior density of the current state given the 

observation is modified by the latest probabilistic measurement of observing the spike 

event , which is the update stage in the adaptive filtering algorithm. )|( i

kkNp x'

Without a closed form solution for state estimation, we estimate all the information 

available through the posterior density of the state given the observed spike event 

at every step. In this way, any interesting moments of the pdf can be 

obtained, for example, Maximum A Posteriori (MAP) can be applied to get the state 

estimation

)|( :1 kk Np x

kx~ , which picks out the sample  with maximum posterior density. We can 

also alternatively obtain the mean value of the posterior   and the error covariance  by 

a technique called collapse [Wu, Black, Memford, Gao, Bienenstock, & Donoghue, 

2004]: 
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From (15) and (16), it is evident that with simple computation one can estimate the 

next state. Hence, the expectation by collapse is simple and elegant. Although this 

amounts to a Gaussian approximation, note that it is done after the arbitrary density is 

propagated through the filter.  

The major drawback of the algorithm is computational complexity because the 

quality of the solution requires many particles  to approximate the 

posterior density. Smoothing the particles with kernels as in (14) alleviates the problem in 
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particular when collapsing is utilized, but still the computation is higher than calculating 

the mean and covariance of the pdf with a Gaussian assumption. 

Although, strictly speaking, collapse of the posterior pdf for estimation of the 

kinematics implies a Gaussian approximation, this occurs only at the “output” stage of 

the algorithm to estimate the state. The propagation of the posterior pdf, however, is non-

parametric and has no underlying assumptions. This means that information about the 

evolution of the kinematics contained in the, generally, non-Gaussian posterior is fully 

preserved (equations (8) through (14)). The examples shown in the next section 

demonstrate the importance of this approach for decoding of the kinematics. 

We have to point out that both approaches (MAP or collapse) assume we know the 

state model  in (6) and the observation model kF )(�f  in (2), which actually are unknown 

in real applications. The state model is normally assumed linear and the parameters are 

obtained from the data using least squares. The knowledge of the observation model is 

very important for decoding (deriving states from observations), because the probabilistic 

approach based on Bayesian estimation constructs the posterior density of each state 

given the spike observation at each time step from the prior density of the state. The prior 

density in turn is the posterior density of previous time step updated with the discrepancy 

between an observation model and the spike event. The observation model basically 

quantifies how each neuron encodes the kinematic variables (encoding step in Figure 1), 

and due to the variability of neural responses it should be carefully estimated from a 

training set. In a previous paper [Wang 2008] we proposed a statistical approach using 

instantaneous kinematics, instead of the conventional window based approach [Paninski, 

Shoham, Fellows, Hatsopoulos, and Donoghue 2004] to estimate the tuning function for 
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each neuron which will be used here in the testing of the SMC estimation model with real 

data.  Figure 1 shows the schematic of the relationship between the encoding and 

decoding in point process SMC estimation. 

Figure 1 Schematic of relationship between encoding and decoding processes for 

Sequential Monte Carlo estimation of point processes 

3. Applications  

In this section, we present performance tests of the proposed point process SMC 

estimation and compare it to adaptive filtering, also on point processes, using a Gaussian 

assumption in simulated and real scenarios.  First, both approaches will be tested on 

synthetic neuron decoding data, where each algorithm is fed to a known observation 

model. Secondly, both algorithms are applied to real neural data from a BMI experiment 

to estimate the kinematics from neural spike trains. The observation model linking the 

measurement of the noisy neural activity to the kinematics implicitly utilizes the tuning 

characteristics of each neuron, which is estimated from the data and will not be explained 
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here due to space limitations. For details on the methodology used to estimate the tuning 

function model of each neuron the reader is referred to Wang [2008].   

3.1 Simulation of neuron decoding 

In a conceptually simplified motor cortical neural model [Moran & Schwartz 1999], 

the one-dimensional velocity can be reconstructed from the neuron spiking events by a 

SMC estimation algorithm. This algorithm can provide a probabilistic approach to infer 

the most probable velocity as one of the components of the state. This decoding 

simulation updates the state estimation simultaneously and reconstructs the signal, which 

assumes interdependence between the encoding and decoding so that the accuracy of the 

receptive field estimation and the accuracy of the signal reconstruction are reliable. 

Let us first explain how the simulated data was generated. The tuning function of the 

receptive field that models the relation between the velocity and the firing rate is assumed 

exponential and given by  

)exp()( kkk vt EPO �    (17) 

where  is the background firing rate without any movement and kE)exp(P  is the 

modulation in firing rate due to the velocity . In practice in the electrophysiology lab, 

this function is unknown. Therefore, an educated guess needs to be made about the 

functional form, and the exponential function is widely utilized. 

kv

The desired velocity is a frequency modulated (chirp) triangle wave corrupted with 

additive Gaussian noise (variance ) at each 1ms time step, as shown in Figure 2. 

The design of the desired signal enables us to check if the algorithm could track the linear 

evolution and the different frequency of the “movement”. 

5105.2 �u
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Figure 2 The desired velocity generated by triangle wave with Gaussian noise  

The background-firing rate  and the modulation parameter kE)exp(P  are set to be 1 

and 3 respectively for the whole simulation time, 60s. A spike is drawn as a Bernoulli 

random variable with probability ttk ')(O  within each 1ms time window [Brown, 

Barbieri, Ventura, Kass, & Frank 2002]. An example of a synthetic spike train is shown 

in Figure 3. 

Figure 3 The simulated neuron spike train generated by an exponential tuning 

function 

With the exponential tuning function operating on the velocity, we can see that when 

the velocity is negative, there are only a few spikes; whereas when the velocity is 
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positive, many spikes appear. The problem is to obtain from this spike train the desired 

velocity of Fig. 2, assuming the Poisson model of (17) and one of the sequential 

estimation techniques discussed. 

To implement the SMC estimation for the point process, we regard both the 

modulation parameter kE  and velocity  as the state . Here we set 100 

samples to initialize the velocity  and modulation parameter 

T

kkk v ][ E xkv

iv0 kE  respectively with a 

uniform and with a Gaussian distribution. Note that too many samples would increase the 

computational complexity dramatically, while an insufficient number of samples would 

result on a poor description of the non-Gaussian posterior density. The new samples are 

generated according to the linear state evolution (6), where  is obtained from the data 

using least squares for  and 1 for 

kF

kv kE  (implicitly assuming that the modulation 

parameter would not change very fast). The i.i.d. noise for velocity state in (6) was drawn 

from the distribution of the error between the true velocity and the linear predicted results 

by . The i.i.d. noise for estimating the modulation parameter kF kE  is approximated by a 

zero mean Gaussian distribution with variance . Notice that the noise variance should 

be small enough to track the unchanged 

710�

kE  set in the data. The kernel size utilized in 

(14) to estimate the maximum of the posterior density (thru MAP) obeys Silverman’s rule 

[Silverman 1981]. 

In order to obtain realistic performance assessments of the different models (MAP 

and collapse), the state estimations kkv E
~~  for the duration of the trajectory are drawn 10 

different times. The velocity reconstruction is shown in Figure 4. The Normalized Mean 

Square Error (MSE normalized by the power of the desired signal) between the desired 
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trajectory and the model output for the adaptive filtering with Gaussian assumption is 

0.3633. NMSE for sequential estimation by MAP is 0.2710 and by collapse is 0.2532. 

Figure 4 The velocity reconstruction by different algorithms 

From Figure 4, we can see that compared with the desired velocity (dash-dotted line), 

all the methods obtain close estimation when there are many spikes, i.e. when the 

velocity is at the positive peaks of the triangle wave.  This is because the high likelihood 

of spikes corresponds to the range of the exponential tuning function where the 

modulation of the high firing probability is easily distinguished and the posterior density 

is close to the Gaussian assumption. However, in the negative peaks of the desired 

velocity the sequential estimation algorithm (using collapse or MAP) performs 

considerably better. This is primarily because the modulation of the firing rate is 

nonlinearly compressed by the exponential tuning function, leading to non-Gaussian 

posterior densities, and thus violating the Gaussian assumption the adaptive filtering 

method relies on. Although there is nearly no neuronal representation for negative 

velocities and therefore both algorithms are inferring the new velocity solely on the 

previous state, the non-parametric estimation of the pdf in the sequential estimation 
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algorithm allows for more accurate inference. As an example, in Figure 5a, the posterior 

density at time 6.247s (when the desired velocity is close to the positive peak) is shown 

(dotted line). It has a Gaussian-like shape and therefore all methods provide similar 

estimations close to the true value (star). In Figure 5b, the posterior density at time 

35.506s (when the desired velocity is close to the negative peak) is shown (dotted line), 

which is clearly non-symmetric with 2 ripples and is obviously also non-Gaussian 

distributed. The adaptive filtering on point process under a Gaussian assumption provides 

poor estimation (gray dotted), because the algorithm assumes and propagates a Gaussian 

pdf resulting in an accumulation of errors. The velocity estimated by the sequential 

estimation with collapse denoted by the circle is the closest to the desired velocity (star). 

Notice the sequential estimation with collapse collapse does better than MAP, and using 

the mean of posterior is equivalent to take it as being Gaussian. What this shows, 

however, is that the shape of the posterior is not really important for the estimation of the 

kinematics at every time step (or the estimation of the posterior is not reliable enough), 

but it is crucial to faithfully keep track of the evolution of the posterior at each step. Put 

differently, with a Gaussian approximation we disregard important information in the 

posterior when computing the evolution of the system. Notice also that in all cases the 

tracking performance gets progressively worse as the frequency increases. This is 

because the state linear model is fixed for the whole data set, which only tracks the 

velocity state at the average frequency. If a time-variant state model is used on a 

segment-by-segment basis, we could expect better reconstructions. 
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Figure 5a at time 6.247s )|( kk Nvp '

Figure 5b at time 35.506s )|( kk Nvp '
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In summary, Sequential Monte Carlo estimation on point processes seems promising 

for state estimation in BMIs. 

3.2 In vivo neural decoding for BMIs 

The Brain-Machine Interface paradigm was designed and implemented in Dr. Miguel 

Nicolelis laboratory at Duke University. Chronic, neural ensemble recordings were 

collected from the brain of an adult female Rhesus monkey, and synchronized with task 

behaviours. Microelectrode arrays were chronically implanted in five cortices: right 

dorsolateral premotor area (PMa), right primary motor cortex (MI), right primary 

somatosensory cortex (S1), right supplementary motor area (SMA), and the left primary 

motor cortex (MI).  

After the surgical procedure, a multi-channel acquisition processor cluster (MAP, 

Plexon, Dallas, TX) was used in the experiments to record the neuronal action potentials 

simultaneously. Analog waveforms of the action potential were amplified and band pass 

filtered from 500 Hz to 5 kHz. The spikes of single neurons from each microwire were 

discriminated based on time-amplitude discriminators and a principal component analysis 

(PCA) algorithm [Nicolelis, Ghazanfar, Faggin, Votaw, & Oliveira, 1997; Wessberg et 

al. 2000]. The firing times of each spike were stored. Table 1 shows the assignment of 

the sorted neural activity to the electrodes for different motor cortical areas [Kim 2005]. 

Table 1. Assignment of the Sorted Neural Activity to the Electrodes 

Right PMa Right MI Right S1 Right SMA Left MI Monkey 1 

(left handed) 1-66(66) 67-123(57) 124-161(38) 162-180(19) 181-185(5) 

The monkey performed a two-dimensional target-reaching task to move the cursor on 

a computer screen by controlling a hand-held joystick to reach the target. The monkey 

was rewarded when the cursor intersected the target. The corresponding position (cm) of 
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the joystick was recorded continuously for an initial 30-min period at a 50 Hz sampling 

rate, referred to as the “pole control” period [Carmena, Lebedev, Crist, O’Doherty, 

Santucci, Dimitrov, Patil, Henriquez, & Nicolelis, 2003]. 

The decoding schematic for BMIs is shown in Fig. 1 as the arrow from right to left. 

The spike times from multiple neurons are the multi-channel point process observations. 

The signal processing begins by first translating the neural spike times into a sequence of 

1 (spike) and 0 (no spike). A small enough time interval should be chosen to guarantee 

the Poisson hypothesis on the conditional intensity function, i.e. only a few intervals 

(ideally none) have more than one spike. If the interval is too small, however, the 

computational complexity is increased without any significant improvement in 

performance. One must also be careful when selecting the kinematic state (position, 

velocity, or acceleration) for the decoding model since the actual neuron encoding is 

unknown. The analysis presented here will consider a vector state with all three kinematic 

variables. The velocity is estimated as the difference between the current and previous 

recorded positions, and the acceleration is estimated by first differences from the 

velocity. For fine temporal resolution, all of the kinematics are interpolated and time 

synchronized with the neural spike trains. 

It is interesting to note that in black box modeling, the motor BMI is posed as a 

decoding problem, i.e. a transformation from motor neurons to behavior. However, when 

we use the Bayesian sequential estimation, decoding is insufficient to solve the modeling 

problem. In order to implement decoding it is important to also model how each neuron 

encodes movement, which is exactly the observation model  in (2). Therefore, one )(�f
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sees that generative models do in fact require more information about the task and are 

therefore an opportunity to further investigate neural function. 

3.2.1 Adaptive Filtering of Point Processes with a Gaussian Assumption for BMIs 

The model developed here will be compared with an adaptive filter using a Gaussian 

assumption [Eden et al. 2004], which will be briefly described next. Adaptive filtering of 

point processes provides an analytical solution to state estimation; therefore, it requires a 

parametric model for the neuron tuning in closed form. Many different functional forms 

of tuning have been proposed, consisting mostly of linear projections of the neural 

modulation on 2 or 3 dimensions of kinematic vectors and bias. Moran and Schwartz 

[1999] also introduced a linear relationship from motor cortical spiking rate to speed and 

direction. Brockwell et al. [2003] assumed an exponential tuning function for their motor 

cortical data. Here we have tried both tuning functions. The exponential model produced 

experimentally a worse estimation than the linear model for this algorithm because it 

cannot actually characterize sufficiently well the tuning properties of the neurons in the 

data set [Wang 2008]. This experimental observation shows the importance of choosing 

an appropriate tuning model for the specific decoding methodology.  

Notice that when a linear tuning function is selected for the observation model 

together with a Gaussian approximation for the posterior density, the end result is 

actually analoguous to a Kalman filter in the spike domain and will be called Kalman 

filter for point process (PP).  Here the linear tuning function is estimated from 10000 

samples of the training data as: 

t t lagO � � �h x B              (18) 

)( tt Poissonspike O              (19) 
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where tO  is the firing probability for each neuron, obtained by smoothing the spike 

train with a Gaussian kernel. The kernel size is empirically set to 0.17 in this experiment 

[Wang 2008].   is the instantaneous kinematics vector defined as tx

[ T]x x x y y y tp v a p v a with 2-dimensional information of position, velocity and 

acceleration. The variable lag refers to the causal time delay between motor cortical 

neuron activity and kinematics due to the propagation effects of signals thru the motor 

and peripheral nervous systems. It was experimentally estimated to be 200 ms [Wang 

2008], which agrees with prior work [Wu et al. 2006]. We extend the kinematics vector 

as [ T1]x x x y y y tp v a p v a to include a bias B , which can be regarded as part of the 

weights of the linear filter H . The tuning function is then 
t t lagO � �H x . The weight 

estimation of the linear filter  is given by  H

1( [ ]) [ ]T

t lag t lag t lag tE E O�
� � � H x x x             (20) 

Equation 20 represents the least squares solution for the linear adaptive filter, where 

 gives the autocorrelation matrix R of the input kinematics vector 

considering a causal time delay.  

[ T

t lag t lagE � �x x ]

][ t lag tE O�x  gives the cross-correlation vector P between 

the input and the firing probability. The linear tuning function in (18) defines the first and 

second derivative terms in (7c) and (7d) as: 

log T

t

t lag t

O
O�

w
 

w

H

x
                         (21) 

2

2

log T

t

T

t lag t lag t

O
O� �

w �
 �

w w

H H

x x
                        (22) 

 26



The kinematics vector is then derived as the state from the observation of multi-

channel spikes train for the test samples by equation (7a-d). 

3.2.2 Sequential Monte Carlo Estimation for Point Processes in BMIs 

Closed form models for tuning may not be optimal for dealing with the real data 

because the tuning properties across the ensemble can vary significantly. In the literature, 

the point process filters have different encoding models according to their applications, 

either a linear approximation (Eden et al. 2004), or nonlinear (Brown et 1998, Barbieri et 

al. 2004). The accuracy of the tuning function estimation can directly affect the modeling 

in the Bayesian approach and the results of the kinematics estimation. One appropriate 

methodology is to estimate neural tuning using the training set data obtained in 

experiments. Based on the work by Simoncelli and colleagues [Simoncelli , Paninski, 

Pillow, and Schwartz,et al 2004] on Linear-Nonlinear-Poisson (LNP) model (figure 6), 

we developed an instantaneous encoding modeling for the neuron tuning function instead 

of performing the estimation on windows of data. Compared to the traditional windowed 

approach, our method builds a one-to-one mapping between the instantaneous kinematics 

vectors to the corresponding neural spiking time, which enables decoding online. Here, 

we briefly review the algorithms, but a full explanation can be found in [Wang 2008] 

including the model reasoning and testing. The tuning function between the kinematic 

vector and the neural spike train is exactly the observation model between the state and 

the observed data in our algorithm.  
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Figure 6. Block diagram of linear-nonlinear Poisson (LNP) model. 

The instantaneous motor cortical neural activity can be modeled as   

( )t tf lagO � �k x                          (23) 

)( tt Poissonspike O               (24) 

where, as before, lagt�x  is the instantaneous kinematics vector defined as 

[ T1]x x x y y y t lag�p v a p v a with 2 dimensional information of position, velocity, 

acceleration and bias with causal time delay depending on the data. For BMIs, the 

kinematic vector in Figure 6 must be read from the experiment for every spike occurrence 

since the task is dynamic, taking into consideration the causal delay between neural 

firings and kinematic outputs [Wang 2008]. The linear filter projects the kinematics 

vector  into its weight vector k  (representing a preferred direction in space), which 

produces a scalar value that is converted by a nonlinear function f and applied to the 

Poisson model as the instantaneous conditional firing probability 

x

tO  for that particular 

direction in space . The filter weights are obtained optimally by least 

squares as k x , where 

( |p spike �k x)

) [ ]
t lag t

T

t lag t lag spike t lagE E
�

�
� � �xx x ]| [

t lag tspike t lagE
� �x x1

|( [ ] D � is the 

conditional expectation of the kinematic data given the spikes. The parameter D  is a 

regularization parameter to properly condition the inverse. The optimal linear filter 

actually projects the multi-dimensional kinematic vectors along the direction where they 

differ the most from the spike triggered kinematic vectors. 
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The nonlinear encoding function f for each neuron was estimated using an intuitive 

nonparametric technique [Chichilnisky, 2001; Simoncelli et al. 2004]. Given the linear 

filter vector k , we drew the histogram of all the kinematics vectors filtered by k , and 

smoothed the histogram by convolving with a Gaussian kernel. The same procedure was 

repeated to draw the smoothed histogram for the outputs of the spike-triggered velocity 

vectors filtered by k .  The nonlinear function f, which gives the conditional 

instantaneous firing rate to the Poisson spike-generating model, was then estimated as the 

ratio of the two smoothed histograms. Since  is estimated from real data by the 

nonparametric technique, it provides a more accurate nonlinear property than just 

assuming the exponential or Gaussian function. In practice, it can be implemented as a 

look up table for its evaluation in testing as  

f

,( )

( | )
( )

t j

test spike training

jt

test t i

test training

i

k

p spike
k

� � �

�  
� � �

¦

¦

k x k x

k x
k x k x

                                (25) 

where k is the Gaussian kernel,  is a possible sample we generate at time t in the test 

data.   is one sample of velocity vector in the training data, and  

t

testx

,

j

spike trainingx
i

trainingx  is 

corresponding spike-triggered sample. The causal time delay is obtained by maximizing 

the mutual information as a function of time lag for each neuron from 10000 continuous 

samples of the kinematic variables [Wang 2008].  

The instantaneous LNP model was developed to enable online decoding for BMIs. In 

[Wang 2008] we compared the decoding performance of the Monet Carlo decoding 

algorithm using the traditional and the instantaneous LNP encoding models. Based on our 

analysis the instantaneous LNP model produces better decoding results and estimates a 

tuning curve with a shape between the exponential and linear curves, and has the best 
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decoding results among the 3 approaches.  

In the decoding process, we further assume that the firing rates of all the neuron 

channels are conditionally independent. The whole Sequential Monte Carlo estimation 

(SMC) algorithm with the encoding and decoding process can be specified in the 

following steps: 

Step 1: Preprocess and analysis. 

1. Generate spike trains from stored spike times. 

2. Synchronize all the kinematics with the spike trains.  

3. Assign the kinematic vector x  to be reconstructed. 

Step 2: Model estimation (encoding). 

1. Estimate the kinematic dynamics of the system model 

 1

1 1 1( [ ]) [ ]T T

k k k kF E E�
� � � x x x xk

x

2. For each neuron j, estimate the tuning function 

1) Linear model  1

|
( [ ] ) [ ]j

j T

spike
E I ED � �

x
k x x

( ,
( )

( )

j j
j j

j

p spike
f

p

)�
�  

�

k x
k x

k x
2) Nonlinear function  

3) Implement the inhomogeneous Poisson generator 

Step 3: Sequential Monte Carlo estimation of the kinematics (decoding) 

For each time k, a set of samples for state  are generated, i=1:N i

kx

1

i i

k k kF kK� �x x , i=1:N 1. Predict new state samples 

2. For each neuron j, 

, (i j j j i

k kfO ) �k x , i=1:N 1) Estimate the conditional firing rate 

2) Update the weights  i=1:N )|( ,, ji

t

j

k

ji

k Npw O'v ,

 30



� i

k

j

ji

k3. Draw the weight for the joint posterior density wW ,
, i=1:N 

4. Normalize the weights 
¦
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i
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W , i=1:N 

5. Draw the joint posterior density x

he joint posterior density b  MAP or 

7.  according to the weights . 

Notice that state vecto  jo t pdf one coordinate at a time. 

Alt ge

 class of real time 

neu

movement, and average over the ensemble, this stochasticity would be eliminated, 

1:

1
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| � �¦x x  

6. Estimate the state *
x  from t yk

expectation. 

Resample i

kx i

kW

r *

kx  is estimated from the in

hough one of the advanta s of using Monte Carlo estimation is to fully retrieve the 

joint space of the multi-dimensional pdf, our results show that many more samples are 

required to explore the joint space appropriately, hence we present results for the 

estimation of the posterior density for each dimension separately. The decoding 

performance would also enable us to analyze the 2D error separately.  

There is still an important issue that needs to be addressed in this

ral models. The SMC estimation for point processes contains two sources of 

stochasticity: the generation of the samples to reconstruct the posterior density and the 

very nature of the single neuron firings that is modeled as a Poisson point process. While 

the former was dealt with the Monte Carlo method (averaging several realizations), the 

later is still present in our results since the decoding method is based on a single spike 

from every neuron probed by the array to meet the real time constraint. If one could 

probe all the neurons of a given cell assembly responsible for a component of the 

 31



however this is practically impossible. Therefore, the coarse sampling has two basic 

consequences: First, the SMC estimation model output will have an error produced by not 

observing all the relevant neural data. This problem will always be present due to the 

huge difference in the number of motor cortex neurons and electrodes. Second, even 

when a given neural assembly is probed by one or a few neurons, it is still not possible to 

achieve accurate modeling due to the stochasticity embedded in the time structure of 

single spike trains.  

This means that every neuron belonging to the same neural assembly will display 

slightly different spike timing, although they share the same intensity function. Since 

eac

ng. This 

is repeated for each neuron in the array. During testing these synthetic spike trains play 

h probed neuron drives an observation model in the BMI directly, there will be a 

stochastic term in the output of the BMI (kinematics estimation) that can only be 

removed by averaging over the neural assembly populations. However, we can attempt to 

decrease this variance by estimating the intensity function from the probed neuron and 

from it generate several synthetic spike trains, use them in the observation model and 

average the corresponding estimated kinematics. Since this averaging is done in the 

movement domain (and if the process would not incur a bias in the estimation of the 

intensity function) the time resolution of the intensity function would be preserved, while 

the variance would be decreased. We call this procedure synthetic averaging and it 

attempts to mimic the population effect in the cortical assemblies. Synthetic averaging is 

rather different and less severe from the time average that is operated in binning. 

The synthetic spike trains are generated by an inhomogeneous Poisson process with a 

mean value given by the estimated intensity function obtained by kernel smoothi
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the

3.2.3 Decoding Results  

The point process adaptive filtering with linear observation model and Gaussian 

assumption (Kalman filter PP) and the proposed SMCE framework were both tested and 

eriment for the 2-D control of a computer cursor using 185 

cor

und to be close to 1 or –1, which verifies 

the

 same role as the true spike trains to predict the kinematics on-line. Of course this will 

increase the computation time proportionally to the number of synthetic spike trains 

created. In a sense we are trying to use computer power to offset the limitations of 

probing relatively few neurons in the cortex. Since the errors in prediction have a bias 

and a variance which are not quantified, it is unclear how much better the performance 

will become with synthetic averaging, but this will be addressed in the validation.  

compared in a BMI exp

tical neurons [Nicolelis et al. 1997, Wessberg et al. 2000]. For each neuron in the 

ensemble, an optimum time interval of 10 ms was selected to construct the point process 

observation sequence. With this interval, 94.1% of the intervals with spikes had only a 

single spike. For each time interval and in each channel, 1 was assigned when there were 

one or more spikes, otherwise 0 was assigned.  

After data preprocessing, all the parameters are estimated from 10000 training 

samples. The kinematic model kF for both algorithms can be estimated using least 

squares. The non-zero coefficients in kF  are fo

 consistency between the estimated acceleration, velocity and positions. For example, 

we checked the differentiated signal from estimated position x. After low-pass filtering to 

removed the noise due to the differentiation, it has a CC of 0.9117 with the estimated 

velocity x.  Notice that the choice of parameters in the noise estimation (covariance kQ  in 

Kalman filter PP and the noise distribution )(Kp  in SMCE) affects the algorithm 
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performance. However, since we have no access to the desired kinematics in the test data 

set, these parameters in both algorithms were obtained from the training data sets. For the 

Kalman filter PP, the noise in the kinematics model (6) is approximated by a Gaussian 

distribution with covariance kQ . In the SMCE model, the noise distribution )(Kp  is 

approximated by the histogram of 1�� kkkk F xxK . The resolution parameter was 

experimentally set at 100 to approximate the noise distribution. The regularization factor 

D  in the tuning function was experimentally set at 10
-7

 for this analysis. The rem ng 

parameters in SMC estimation include 

aini

the kernel size V  selected at 0.02. The number of 

particles nx  is set for a reasonable compromise between computational time and 

imation performance. By studying the decoding performances using different number 

of samples, we found out that when nx  is experim tally set at 1000, performance 

converges. This kernel size should be chosen carefully to not lose the characteristics of 

the tuning curve, while still minimizing ripples in the estimated density.  

The Kalman filter PP has an analytica olution. We set the initial state 
0x to be a zero 

vector and the state variance 0|0P is estimated from the training data. Once the initial 

condition and parameters are set, the state estimation is determined uniqu

est

en

l s

ely by the spike 

obs

 the solid line is reconstruction by SMC estimation. We can see that the 

ervations. However, the SMCE approach introduces variations between realizations 

even with fixed parameters due to the estimation of the posterior distribution with the 

particles.  

Figure 7 shows the 2D reconstruction of position for a segment of data, where the 

dot-dashed line is the desired signal, the dashed line is the reconstruction by Kalman 

filter PP, and  the 
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SM

Table 2 shows reconstruction results on a 1000 sample (10 seconds) segment of a test 

segment (shown in Figure 7) of neural data. Correlation Coefficients (CC) and 

er of the desired signal) 

bet

C estimation follows the desired signal with less error and more smoothly. We also 

notice that the performance for x and y are different, therefore we analyze the 

reconstruction error for x and y separately and then in 2D space. 

 

Figure 7 The 2D reconstruction of the position by 2 approaches 

Normalized Mean Square Error (MSE normalized by the pow

ween the desired signal and the estimations for each kinematic variable and direction 

are evaluated for the Kalman filter PP as well as for the SMC estimation using 20 

realizations of the posterior. For the second approach we also show the mean and the 

standard derivation among realizations, together with the best and the worst performance 

obtained by single realization. 
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Table 2 Results Comparison of the Kinematics Reconstructions by 2 methods for segment of data 

Position Velocity Acceleration 
Method Criterion 

x y x y x y 

CC 0.74 0.83 0.74 0.68 0.42 0.18 Kal

filter PP 

1.13 

man 

  NMSE 0.81 1.51 0.50 0.77 0.95 

meanr std 0.8 0.01 0.81r 3r 0.01 0.79r 0.01 0.74r 0.01 0.4 0.01 0.25r 5r 0.01 

Best 0.83 0.84 0.80 0.74 0.47 0.26 
C

C  

Worst 0.79 0.83 0.78 0.73 0.44 0.25 

meanr std 0.4 03 0.94r 0. 8r 0.14 0.45r 0.02 0.55r 0.01 0.8 01 1.02r 0. 3r 0.01 

SMCE 

Best 0.40 0.74 0.45 0.54 0.81 1.04 

N

M

S

  .4 .3 .4 .8 .0E 0 3 1 0 0 4    0.54 0 1 1 2 Worst

 

th proaches resulted in reasonable reconstructions of the position and the 

velocity. The position show  best co tion coefficient with the true tra y. This

sult may be due to the fact that the velocity and the acceleration were derived as 

diff

Bo  ap

s the rrela jector  

re

erential variables, where the noise in the estimation might be magnified. Although the 

Kalman filter PP assumes a Gaussian posterior and a simple linear model for both the 

kinematic dynamic system and the tuning function, it obtains a reasonable reconstruction 

of the position and the velocity. For the position, CC= 0.7422 was for the x direction and 

CC= 0.8264 for the y direction. The velocity shows a CC = 0.7416 for x and CC = 0.6813 

for y. For SMC estimation one obtains the tuning function nonlinearity for each neuron 

from the training data and estimates the kinematics without any restriction on the 

posterior density. The average correlation for the position along x is 0.8058r 0.0111 and 

along y is 0.8396 r 0.0124. The average correlation for the velocity along x is 

0.7945r 0.0104 and along y is 0.7381r 0.0057. We notice that although SMC estimation 

introduces differences on the reconstruction among realizations due to stochasticity, the 
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variance of the results is pretty small. Even the worst result we obtain is better than the 

Kalman ilter PP in terms of both CC and NMSE. 

Since the desired signal in the test set data is formally unknown, it is not reasonable 

to just pick the best realization to present the reconstruction results. Here, we choose the 

averaged performance among realizations as 

 f

the reconstruction results by SMC 

estimation, and compare with the Kalman filter PP results. 
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Figure 8 The reconstructed kinematics for a 2-D reaching task 

Figure 8 shows the reconstructed kinematics using both algorithms from all 185 

neurons for 1000 testing samples (10 seconds). The left and right panels depict 
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respectively the reconstructed kinematics for x-axis and y-axis. The 3 rows of plots from 

top to bottom display respectively the reconstructed position, the velocity and the 

acceleration. In each subplot, the dash line indicates the desired signal, the solid line 

indicates the estimation by SMCE, and the dotted line indicates the estimation by Kalman 

filtering PP. The Monte Carlo approach offers the most consistent reconstruction in terms 

of both correlation coefficient and normalized mean square error. Figure 9 zooms in the 

first 100 samples of the reconstructed kinematics to show better the modeling accuracy. 

The dash line is the desired signal the same as in figure 8. The solid line is the 

reconstructed kinematics by one trial of SMC estimation. The gray area in each plot 

represents the posterior density estimated by the algorithm over time where the darker 

areas represent a higher value. As the value of the posterior density decreases to 0, the 

color of the dots will fade to white. Figure 9 shows the SMC estimation effectiveness to 

generate samples whose density follows the trajectory. The desired signal falls almost 

always within the high probability range of the posterior density, which demonstrates the 

good tracking ability of SMC. 
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Figure 9 The posterior density of the reconstructed kinematics by SMCE 

The simulation of both models with synthetic data provides important hints on how to 

interpret the results with real neural data. The linear tuning model of the Kalman filter PP 

provides less accuracy in the nonlinear region of the tuning function, which in turn 

affects the decoding performance. Moreover, the Kalman filter PP also assumes a 

Gaussian posterior density, therefore both algorithms provide similar velocity estimation 

along y when both assumptions are verified. When the estimation from the two 

algorithms are different (which often occurs at the peak of the desired signal), the SMC 

estimation model usually provides better performance, which is due to either its better 
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modeling of the neuron’s nonlinear tuning and/or its ability to track the non-Gaussian 

posterior density better.  

Figure 10 shows the posterior density of the position x given the spikes at the time 

index 216.25 seconds as an example of the non-Gaussian distribution. The pdf shape is 

estimated by Parzen windowing with 1000 samples. The kernel size to smooth the 

samples is chosen according to the Silverman’s rule [Silverman 1981]. The pdf retrieved 

by Kalman filter PP is shown with a dashed line, and the pdf by SMCE is shown with the 

solid line. The pdf by SMCE in this image has multi-modes, which is certainly not 

Gaussian distributed. In order to statistically check the normality of posterior density 

along time, we performed Lilliefors test [Lilliefors, 1967] on the pdf shown in figure 8 

for each kinematic variable. The test is performed as a goodness-of-fit test against the 

alternative that the kinematic samples do not come from a normal distribution. In contrast 

to Kolmogorov-Smirnov test, which requires that the null distribution be completely 

specified, the parameters of the null distribution (Gaussian) must be estimated from the 

samples. At . = 0.05 significance level, 68% and 67% (respectively x and y) of the 

position pdf along time rejects the null hypothesis, which means they are not Gaussian 

distributed. For velocity, 39% and 49% (respectively x and y) of the pdf along time are 

not Gaussian distributed. For acceleration, 14% and 32% (respectively x and y) of the 

acceleration pdf along time are not Gaussian distributed. These results indicate the 

necessary to evaluate the pdf without Gaussian assumptions. 
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Figure 10 The posterior density of the reconstructed kinematics by SMCE and 

Kalman PP 

We can also notice that the desired signal (star) is located within the main range of 

the pdf distribution by SMCE, while only the left tail of the Kalman filter PP pdf covers 

the desired signal with smaller probability density. The bias between the two pdf 

distributions is observed most of the time. It indicates a smaller accuracy of the linear 

tuning by Kalman filter PP and the error due to the less accurate pdf information 

propagated along time.  

As we analyzed in the previous section, in order to deal with the intrinsic stochasticity 

due to the randomness of the spike trains, we proposed the synthetic averaging idea to 

mimic the neuron population effect. Instead of decoding only from current spike trains, 

we use a Poisson generator to obtain 20 sets of spike trains from each neuron as synthetic 
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plausible observations to represent the neuron ensemble firing with the same intensity 

function. This firing intensity function is estimated by kernel smoothing from each 

recorded spike train. The kernel size is experimentally set as 0.17 as the one used in the 

Kalman filter PP. In order to preserve the timing resolution as much as possible, the 

averaging is performed across the estimated kinematics of each group (including the 

output of the true spike train). Table 3 shows the comparison results of the performance 

by SMC estimation averaged among 20 realizations on recorded spike trains and the 

average decoding performance from 20 sets of re-generated spike trains (1 Monte Carlo 

trials for each set), and the averaged performance over Monte Carlo and synthetic data 

(20 sets re-generated spike trains, 20 Monte Carlo trials for each set) in the same segment 

of test data.  

Table 3 Results Comparison of the Kinematics Reconstructions averaged among Monte Carlo trials 

and synthetic averaging 

Position Velocity Acceleration 
criterion method 

X y X y x y 

Average among 20 Monte Carlo trials 0.811 0.837 0.799 0.741 0.456 0.255 

Average among 20 Synthetic spikes, 

1 Monte Carlo trials each 
0.844 0.833 0.805 0.733 0.468 0.212 CC 

Average among 20 Synthetic spikes, 
0.843 0.852 0.822 0.737 0.443 0.233 

20 Monte Carlo trials each  

Average among 20 Monte Carlo trials 0.429 0.933 0.439 0.538 0.817 1.025 

Average among 20 Synthetic spikes 

1 Monte Carlo trials each 
0.326 0.821 0.359 0.494 0.787 1.013 NMSE 

Average among 20 Synthetic spikes, 
0.319 0.768 0.330 0.484 0.808 0.990 

20 Monte Carlo trials each 

Both approaches as well as the “deterministic” performance resulted in reconstruction 

with similar correlation coefficients. However, the average over synthetic data even with 

only one Monte Carlo trial for each generated spike train sets, shows smoother 

kinematics reconstruction with reduced NMSE compared to the averaged performance 

through 20 Monte Carlo trials on original spike trains. When we use 20 Monte Carlo 
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trials for each set of synthetic spike trains, NMSE reduces 26% for position along x, 18% 

for position along y, and on average 15% for all 6 kinematic variables. Therefore we can 

conclude that the reconstruction accuracy measured by NMSE (the gain difference 

noticeable in Figure 8) has a large component due to the variance intrinsic in the spike 

firing, but it seems not to affect the general trend of the reconstructed signal as measured 

by the CC.  

This result demonstrates that using the simulated neuronal population attenuates the 

variability intrinsic in the coarse sampling of a given neural population, effectively 

trading computation for lack of more neural channels belonging to the same neural 

population. However, this procedure only reduces the kinematics estimation error that is 

due to the variance of the recorded spike trains as single random realizations of a 

stochastic process. It cannot cope with the lack of information produced by the coarse 

sampling of other neural population involved in the movement but not sampled at all. 

And in the process, the procedure creates a difficult to quantify modeling bias because 

the intensity function is estimated from a single neuron. Overall, however, the method 

gains more than it looses as measured by NMSE. When compared with binning 

(averaging in time), averaging in the kinematics domain preserves the natural 

stochasticity of the intensity function and still smoothes the reconstruction. 

As for the figure of merit for reconstruction, the correlation coefficient has been the 

preferred metric to compare movement reconstruction between different experimental 

data sets in BMIs [Wessberg et al. 2000]. However, it may not be sufficient to evaluate 

the accuracy of BMI algorithm, since a bias in position means that a different point in the 

external space will be targeted, so the rating criterion should take this bias into 
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consideration to properly compare reconstruction models. Notice also that the correlation 

coefficient obtained from the acceleration is pretty low. However, if we qualitatively 

check the reconstruction results in Figure 8, the algorithm actually follows the trend of 

the desired signal closely. The problem with the NMSE for BMIs is that the results do not 

“look as good”, with errors sometimes bigger than the power of the trajectory. This can 

be observed in Figure 8, where the reconstructed position seems to have a different scale 

than the desired trajectory. Therefore, to compare the algorithm’s performance on the 

same data set, NMSE provides generally better insights on tracking accuracy of the 

animal’s true movement trajectory. 

We have to mention that the improvement of the decoding results comes at the cost of 

computational complexity. The full access of the posterior density within the nonlinear 

system needs many Monte Carlo samples. Figure 11 shows the decoding performance vs. 

the number of samples  for each kinematic variable. The left and right panels show 

respectively the reconstruction results (CC in cross and NMSE in circlet) for x-axis and 

y-axis. The 3 rows of plots from top to bottom display respectively the reconstruction 

results of position, the velocity and the acceleration. We can see that the NMSE shows 

clearer trends (decrease) than CC when there are more Monte Carlo samples. It indicates 

that when there are enough samples to fully explore the probability space, the algorithm 

is able to capture the detailed change in the kinematics without affecting the general trend 

of the reconstructed signal as measured by the CC.  Although the performance can still be 

enhanced by increase the Monte Carlo sample number, this comes at the expense of 

higher computation in calculating the posterior density for each point. There should be a 

tradeoff between the performance improvement and bearable computational complexity. 

nx
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The appropriate number of samples should be chosen as the performance starts to 

converge while the computation time is still acceptable for on-line implementation. 

 

Figure 11 The decoding performances versus the number of Monte Carlo samples. 

We further compared the statistical performance of both algorithms on 8000 samples 

of test neural data (80 sec). The performance averaged among the decoding results from 

20 sets re-generated spike trains is chosen as the reconstruction result by SMCE. Due to 

the computation burden, we only run the decoding process for 1 Monte Carlo trial on 

each set of synthetic spike trains. NMSE for each dimension and the 2D error (RMSE 

normalized by the diameter of the 2D range) were both evaluated with an 800 sample-

long window with 50% overlap.  For each segment of data, pair-wise student t-test was 
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performed to see if the results are statistically different from the Kalman filter PP. The 

test is performed against the alternative specified by the right tail test 

NMSE >NMSEKalman SMCE and the right tail test RMSE >RMSEKalman SMCE for each 

kinematic variable. All the tests are performed on the null hypothesis at . = 0.05 

significance level. Under the null hypothesis, the probability of observing a value equal 

or higher in the test statistic, as indicated by the p-value, is shown in table 4. 

Table 4 statistical performance of the Kinematics Reconstructions by 2 methods 

Position Velocity Acceleration 
 Method 

x y x y x y 

0.897 1.043 0.673 0.686 0.891 1.085 
Kalman filter PP r r r r r r0.305 0.245 0.271 0.172 0.187 0.385 

NMSE 
0.466 0.887 0.436 0.446 0.755 0.947 

SMCE r r r r r r0.181 0.301 0.124 0.133 0.168 0.380 

H
t-test 1: NMSE >NMSEKalman SMCE 1(0) 1(0.023) 1(0) 1(0) 1(0) 1(0) 

(p_value) 

The t-test verifies that the reconstruction with SMC estimation is statistically better 

than the Kalman filter PP for all kinematic variables. In terms of the averaged 

performance, the reconstruction of position improves 48% and 15% respectively for x 

and y; the reconstruction of velocity improves 34% and 35% respectively for x and y; the 

reconstruction of acceleration improves 14% and 12% respectively for x and y. 

The statistical 2D error is also shown for the same data segment between the 

reconstructions and desired signal normalized by the diameter of the movement range for 

each kinematic variable in table 5. It provides an idea in space how good the performance 

should be.  Not only the results by Kalman filter PP and SMC estimation, but also the 

linear decoding results (Wiener filter) on the binned spikes (100 ms window) are shown 

here as a reference. The pair-wise t-test was also performed against the alternative 

specified by the right tail test RMSEWiener>RMSESMCE and RMSE >RMSEKalman SMCE for 
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each kinematic variable at . = 0.05 significance level. 

Table 5 statistical performance of the Kinematics Reconstructions by different approaches 

Position Velocity Acceleration 
 Method 

x y x y x y 

r rWiener filter on binned spike 0.2687 0.0473 0.1739 0.0215 0.1828 0.0162 r

Kalman filter PP 0.2444r 0.0414 0.1395r 0.0238 0.1102 0.0293 rRMSE

-2D 

r rSMC estimation  0.1951 0.0414  0.1156 0.0163  0.0983 0.0262  r

All the t-tests successfully reject the null hypothesis, which verifies that reconstruction 

by SMC estimation is statistically better in 2D than the Kalman filter PP and Linear 

decoding method using binned spikes for all kinematic variables. In terms of the averaged 

performance compared to the Wiener filter, the reconstruction of position improves 

27.36%, the reconstruction of velocity improves 32.74%, and the reconstruction of 

acceleration improves 46.18%. Comparing to the Kalman filter PP, the reconstruction of 

position improves 20.14%, the reconstruction of velocity improves 17.10%, and the 

reconstruction of acceleration improves 10.75%. In addition, both of the approaches in 

spike domain outperform the Wiener filter in continuous domain, which shows the 

potential advantage of decoding with the spike timing. 

4. Discussion and Conclusion 

Although spike trains are very telling of neuronal function, they are also very removed 

from the macroscopic time scales of behavior. Therefore, a central question in modeling 

brain function in behavior experiments is how to optimally bridge the time scale between 

spike events (milliseconds) and the time scale of behavior (seconds). Most often, the 

relatively rudimentary method of time averaging (binning spikes) is used to bridge this 
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gap, but excludes the rich information embedded in the high resolution of the spike 

representation. Model-based methodologies including an encoding model linking the 

firing times to state variables as the ones presented in this paper seem to be a much more 

principled way to model the hierarchy of scales present in the nervous system. However, 

these models are intrinsically stochastic with the encoding models in use today, so they 

pose difficulties for real time operation of BMI models.  

Here it was shown how a SMCE framework could be used as a probabilistic approach 

to reconstruct the kinematics directly from the multi-channel neural spike trains. We 

characterize the neuron tuning (encoding) properties to describe the functional 

relationship between each neuron firing and movement, using a parametric instantaneous 

linear-nonlinear-Poisson model [Wang 2008]. Comparing the decoding performances by 

linear and exponential tuning model within the same decoding algorithm, the 

instantaneous LNP model provides more reasonable tuning curves and better decoding 

results. However, further development and validation of this encoding model is an 

important aspect to consider because it directly affects the decoding performance. 

With this encoding information, a novel signal processing algorithm based on 

Sequential Monte Carlo estimation was applied directly to point processes to convert the 

decoding problem of a Brain Machine Interface system into a problem of state sequential 

estimation. These signal-processing techniques directly draw information from timing of 

discrete event without a Gaussian assumption. In simulations, we showed that SMC 

estimation provided a better approximation of the evolution of the posterior density 

without any constrains when compared with adaptive filtering of point process under a 

Gaussian assumption. The results show the important of directly propagating the full 
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posterior over time instead of the Gaussian approximation commonly used, since the 

latter disregards important information in the posterior about the kinematics evolution. In 

our approach the final state is still derived from the non-parametrically reconstructed 

posterior by collapse, which indirectly assumes a Gaussian pdf model. Minor 

improvements can perhaps be gained if a more powerful estimation of the peak of the 

posterior is utilized to estimate the state. Although proposed for application in BMI, the 

modeling methodology is a general non-parametric approach that can infer continuous 

signals from point process without constraints, which potentially can be utilized in many 

other neuroscience applications (e.g. visual cortex processing), in communications 

(network traffic) and in process optimization. On the other hand, since pdf information is 

fully stored and propagated for each time index, the computation complexity is one of the 

trade-offs that the user must consider. We were able to pin point and quantify for motor 

BMIs the performance cap associated with the Gaussian assumption. Towards this goal, 

we compared performance with the Kalman filter PP applied to a cursor control task, and 

concluded that the SMC PP framework showed statistically better results between the 

desired and estimated trajectory. From the t-test results, the SMC estimation is 

significantly better than the Kalman filter PP and also the traditional linear decoding 

using spike rates. This seems to indicate that the real advantage is in the better neural 

modeling achieved with the tuning curve and the more accurate tracking due to the non-

parametric estimation of the posterior. 

Although the results are interesting, the signal processing methodologies for spike train 

modeling need to be further developed. They are substantially more complex than the 

ones for random processes, and many parameters are assumed and/or need estimation 
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with significant design expertise, and at the end of the day, the results are still 

intrinsically stochastic due to the randomness of the generated spike trains in the 

encoding model. In order to achieve more reliable results, we propose an averaging idea 

to artificially generate several sets of spike trains from the estimated firing intensity 

probability of the neurons to simulate the population effects in the cortex. The model is 

augmented with synthetically generated spike train realizations for the reconstruction of 

the kinematics. The performance is averaged among the decoding results in the 

movement domain to bypass the possible distortion in the nonlinear tuning function due 

to the binning. The synthetic averaging is an attempt to reduce the variance of the spike 

timing introduced by single realization of the neuron recordings but it also helps bridge 

the time-resolution difference between neuron activity and the kinematics, because the 

time scale of the intensity function defines the time resolution of the results. Since the 

synthetic averaging provided smoother kinematics reconstruction that agreed better with 

the measured movement, the variance of the estimation seems to be the limiting factor, i.e. 

it overshadowed the model bias created by the synthetic spike train generation. In other 

words, these results show that the time resolution of the spike trains seems an overkill for 

the kinematic reconstruction in these types of cursor tracking tasks, otherwise, when the 

synthetic copies were created with a stochastic timing consistent with the intensity 

function, the results would have been worse. If the goal of the analysis included a 

mapping of spike trains to electromyographic activity, where time resolution is essential, 

the conclusion may have been different. Therefore, spike timing models are more 

versatile spanning multiple time scales but the goal of the physiologic experiment 

ultimately determines the time resolution necessary. For motor BMIs a neural tuning 
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model for the time scale of the intensity function seems essential to reduce computation.    

Another direction for further development is to remove the need to discretize the 

operation of the particle filter, i.e. remove the small binning interval used to convert the 

spike train into a binary string. This could potentially reduce the computational 

complexity due to the sparsity of spike events, however it is still not totally clear how the 

method proposed in [Del Moral P., Doucet A & Jasra A, 2006] affects the observation 

model nor how the non-uniform sampling will affect the mathematical analysis. 
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