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Abstract— Several methods have been described in the lit-
erature to verify the presence of couplings between neurons
in the brain. In this paper we introduce the peri-event cross-
correlation over time (PECCOT) to describe the interaction
among the two neurons as a function of the event onset.
Instead of averaging over time, the PECCOT averages the cross-
correlation over instances of the event. As a consequence, the
PECCOT is able to characterize with high temporal resolution
the interactions over time among neurons. To illustrate the
method, the PECCOT is applied to a simulated dataset and
for analysis of synchrony in recordings of a rat performing a
go/mo go behavioral lever press task. We verify the presence
of synchrony before the lever press time and its suppression
afterwards.

I. INTRODUCTION

An important problem in neurophysiological studies is
how to assess and measure the temporal dynamics of neural
couplings. This is fundamental to understand the underlying
principles of information transmission by a population of
neurons [1]. Many studies have reported on encoding by
populations of neurons either by modulation of the firing rate
of neurons [2], the precise timing of the neuronal firings [3],
[4], or both [5]. In the case of synchronous firings [3], [4]
the dependence on correlation over time is implicit since,
by definition, synchrony can only asserted between at least
two neurons. But this is equally important for population
representations in terms of rate modulations [6].

Therefore, several methods have been proposed on how to
verify and quantify the presence of interactions in neuronal
firings. Some well known examples are cross-correlation,
joint peri-stimulus time histogram (JPSTH), unitary events,
partial directed coherence (PDC), among others. The cross-
correlation function [7] is probably the most widely used
technique to measure the interaction between spike trains.
Cross-correlation as a statistical measure was “imported”
from random processes and can only be applied to point
processes by first transforming uncertainty in time onto
amplitude variability. Moreover, to address non-stationarity,
the cross-correlation is averaged over windows of time
which greatly compromises the time resolution and limits
its usefulness as a descriptor of the evolution of correlation
as a function of time. The JPSTH [8], [9] is another widely
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used tool to characterize the evolution of synchrony over
time between two neurons. However, the approach rapidly
becomes unmanageable for more than just a few neurons
since the analysis is does in pairs (e.g., 16 neurons requires
120 JPSTH plots). Unitary events [10], [11] is a statistical
method to detect coincident joint spike activity above chance.
But, like other methods, is also sensitive to binning and
employs a large moving window analysis for statistical
reliability. Similar to the cross-correlation, the PDC [12] and
the method by Hurtado et al. [13] operate over windows of
data in the frequency domain, and thus do not provide an
effective description of the evolution of the interactions over
time.

For analysis of interactions among neurons we need a
method capable of characterizing the evolution of correlation
as a function of time, that can easily scale with an increasing
number of neurons, and may be applicable either the exper-
imenter is seeking for correlation in firing rate modulations
or synchronous firing. However, all the above mentioned
methods are limited in at least one of these issues.

In this paper we propose the peri-event cross-correlation
over time (PECCOT) to analyze and visualize the evolution
of synergistic information over time in a convenient way.
The PECCOT is computed by averaging the cross-correlation
over multiple realizations of an event. Therefore it allows
to infer the relation between interactions among neurons
and the event onset. Because the averaging is done over
the realizations instead of over time, the PECCOT is able
to characterize the interactions among neurons with high
temporal resolution. Moreover, because it is formulated in
terms of the ideas of the generalized cross-correlation (GCC)
[14] it is applicable regardless of timescale of analysis.
To validate and illustrate the method, the PECCOT is first
applied to a simulated dataset where it is known which
neuron pair is coupled and at what time the connectivity
is in effect. Then, it is utilized for analysis of synchrony in
recordings of a rat performing a go/no go behavioral lever
press task. It is easily verifiable the presence of synchronous
firings immediately before the lever is pressed and their
suppression afterwards.

II. PERI-EVENT CROSS-CORRELATION OVER TIME

Cross-correlation of two spike trains, say A and B, is
typically expressed in terms of their binned counterparts as,
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where M is the number of bins and N4[n], Ng[n| are the
number of spikes in the nth bin for spike train A and B,



respectively. But, binning is an estimator of the firing rate
(apart from a normalization by the bin size) [15]. Therefore,
cross-correlation of spike trains should be expressed directly
in terms of the intensity functions of the underlying point
processes; that is,

Cap(t) = E[Aa(t)Ap(t)] 2)

where A4(t) and Ap(t) denote the intensity functions for
spike trains A and B, respectively. Clearly, the generalized
cross-correlation (GCC) [14] definition in equation (2) ex-
presses the cross-correlation in more fundamental principles
than equation (1).

The main difficulty in estimating cross-correlation is that
in practice only stochastic estimates of the intensity functions
of the spike trains are available. The traditional approach is to
average the instantaneous cross-correlation in the argument
of expectation over a time interval. The problem with this
approach is that it trades time resolution for statistical
reliability. Instead, for experimental paradigms with multiple
realizations, we propose to average the instantaneous cross-
correlation of the estimated intensity functions over the trials,
similarly to how the peri-event time histogram (PETH) is
obtained, thus retaining the full temporal resolution.

For estimation of the intensity functions the conventional
approach in the statistical literature is kernel smoothing [16],
with clear advantages over binning. Denote the spike times
of spike train A in the time interval [0,7] as {t/* : i =
1,..., N4}, where N4 is the number of spikes of A in the
interval. The estimated intensity function is given by
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where h is the smoothing function. For intensity estimation
this function ~ must integrate to one. The primal advantage
of this approach for intensity estimation compared to binning
is that no discretization in time is introduced and therefore
the resolution is not decreased even if larger timescales of
analysis are intended.

Therefore the algorithm for estimation of the PECCOT is
as follows:

1) For each realization of the event,

a) Estimate the intensity function of each neuron in
an time interval around the event onset, [T, T
(zero corresponding to the event onset), according
to equation (3).

b) Compute the instantaneous cross-correlation for
each pair of neurons. At the kth realization,
between neurons ¢ and j, the instantaneous cross-
correlation is,

el (1) = M()M.(0),
where M. (t), /A\fc(t) are the estimated intensity
functions for the realization.
2) Average the instantaneous cross-correlation for each
pair of neurons across realizations.
Careful examining the method one may recognize the
same form that leads to the main diagonal of the JPSTH [9]
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Fig. 1: Modulation of intensity with the event for each
neuron.

which typically expresses the neural interactions. The differ-
ence however is that here the computation is done explicitly,
and thus much more efficient. Also, by focusing only on this
function, analysis of the overall result is much simpler since
the result of all pairs of neurons may be summarized in a
single plot. Nevertheless, as for the JPSTH, it is also possible
to compute other diagonals by introducing the dependency
to a lag between A (¢) and A, (t). Moreover, the statistical
procedure proposed by [9] for normalization of the JPSTH
can be applied for normalization of the PECCOT, with
intensity estimation by kernel smoothing.

III. RESULTS
A. Simulated experiment

To illustrate and validate the method just proposed we
consider a simple simulated example. Three neurons with
base firing rate 20 spk/s were generated. All of these neurons
modulated their firing rate in the time vicinity of the event,
as shown in figure 1, and here generated with an inhomoge-
neous Poisson model. In addition, neurons A and B tended
to fire synchronously approximately 0.12s before the event.
This coupling was introduced in the generated spike trains
by selecting the nearest spike of A to 0.12s before the event
as a reference and moving the closest spike in B to the same
time (with a 1ms zero mean Gaussian jitter added), if the two
spikes differ by less than 50ms (baseline inter-spike interval).
Neuron C spiked independently of both A and B. A total of
100 event realizations (trials) where generated.

The constructed dataset was analyzed by PECCOT with
a Gaussian smoothing function of width ¢ = 5ms. The
computed result is shown in figure 2. The result was centered
by removing the expected coincidence levels merely due
to rate modulations. The PECCOT marks the presence of
synchronous activity between neurons A and B with a strong
peak in the cross-correlation roughly 0.12s before the event
onset, as expected given the construction of the dataset.
Moreover, the instantaneous cross-correlation between neu-
ron C' and others does not show any significant peak, only
the effect of firing rate modulations.

For comparison, we also computed the JPSTH for the
same neuron pairs (shown in figure 3) using NeuroExplorer
(Littleton, MA). For ease of comparison, the bin size was set
to Sms. Again, we observe a strong peak between A and B
approximately 0.12s before the event. Several interactions are
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Fig. 2: Centered PECCOT for the three neuron pairs around
the lever.

visible for the other two pairs. However, carefully examining
the scales one notices that the peak is about two times higher
in the first case. These results highlight the difficulty in an-
alyzing multiple JPSTH plots, especially with an increasing
number of neuron pairs. On the other hand, by displaying
the result of all neuron pairs in a single plot under the same
scale, the PECCOT greatly simplifies this analysis.

B. Behavioral experiment

1) Data description: In this study we utilized multi-
electrode array recordings collected from male Sprague-
Dawley rats performing a go-no go lever pressing task.
Array configurations of two rows of eight tungsten electrodes
(2x8), spaced 250um between columns and 500m between
rows, were chronically implanted in the forelimb region of
M1 (+1.0mm anterior, 2.5mm lateral of bregma). Neuronal
activity was collected with a Tucker-Davis recording rig
with sampling frequency of 24414.1Hz and digitized to 16
bits of resolution. In this dataset, 29 channels had action
potentials above the noise floor from which, after spike
sorting and removing neurons firing slower that one spike
per second, we retained 39 spike trains from single neurons,
24 from the left hemisphere of the brain and 15 from
the right hemisphere. The queue and lever press signals
were recorded simultaneously with the neural activity with
sampling frequency 381.5Hz.

2) Data analysis: The PECCOT is now demonstrated for
the analysis of couplings in the neuronal firings of neurons in
forelimb region of M1 of a rat performing a behavioral task.
Specifically, we wanted to verify if the neurons’ synchronous
firing patterns modulated with movement onset. This ques-
tion is of high relevance, for example, for brain-machine
interfaces (BMIs) since it may suggest that additional in-
formation is being conveyed about the movement through
synergistic correlations among neurons.

To test this hypothesis the centered PECCOT'! was com-
puted in a neighborhood of two seconds before and after the

ICentering was utilized to remove the effect of very different firing rates
and their modulations.
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Fig. 3: Centered JPSTH for each neuron pair.

lever presses. The smoothing filter was a Gaussian function
with width ¢ = 5ms. For visualization purposes, the centered
PECCOT was smoothed with a Gaussian window of width,
o = 10ms. To analyze possible differences in synchrony
modulation between left and right lever presses (since the two
levers are usually pressed with different paws) and between
hemispheres, the situations are considered separately. A total
of 93 left lever presses and 45 right lever presses were used
for averaging. The results are shown in figure 4. We opted
to display the results in the form of a color coded figure
due to the large number of neuron pairs, making it easier
to visualize the overall modulation and identify the most
relevant neuron pairs.

It can be observed that the synchrony among neurons in
the left hemisphere is far more widespread than in the right
hemisphere, for both left or right level presses. It can be
clearly observed that in all situations there is considerable
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Fig. 4: Centered PECCOT around the lever press onset. The
two columns correspond to neurons from the left and right
hemispheres, respectively, and two rows correspond to the
situation in which either the left or right lever was pressed,
respectively.

interaction among neurons before the lever press instant
and that these interactions are almost entirely suppressed
immediately after. Approximately one second after the lever
press instant the synchrony increases again. Interestingly,
it should be remarked that this time interval corresponds
approximately to the average duration of a lever press, after
which the rat receives a water reward if the correct lever was
pressed. Moreover, we notice lever press specific synchrony
modulation with depressions around 1.4s, 0.95s, 0.8s, 0.45s
and 0.3s before a left lever press, and a major depression
around 1.25s before a right lever press. These modulations
are present at the same time in both hemispheres. Also, in the
images it is apparent that the interactions between neurons
tend to be phase locked and have a periodic component in
the theta range (3—8Hz). Although we have not investigated
the reason for this periodic phase locking of synchrony, these
results may provide further evidence on the role of low fre-
quency rhythms commonly found in meso- and macroscopic
recordings as “clock signals” for synchronization of multiple
brain regions.

IV. CONCLUSION

In this paper we presented the PECCOT as a new tool to
study interactions among neurons over time in the vicinity of
an event in time. The key idea is to exchange averaging over
time, as is usually done, by averaging over the realizations.
This allows for high temporal resolution without compromis-
ing the variation in the estimation. Moreover, because the
cross-correlation over time can be plotted together for all
pairs of neurons, it is still easy to visualize the overall result
as the number of neurons is increased. Although the method
is perhaps most useful to verify interaction in the form of
synchrony, the formulation is more general and the method
can in principle also be applied to analysis of correlations in
rate modulations.

The application of PECCOT for data analysis showed its
importance to assess the presence of correlations around
an event. In the behavioral experiment, we verified the
presence and modulation over time of synchronous firings
in the rat’s motor cortex M1 in preparation for movement.
These results suggest further studies to track the evolution
of interactions between regions in brain. Furthermore, we
found that synchrony is modulated in a somewhat periodic
manner and thus the PECCOT may be an effective tool to
relate meso- and macroscopic recordings, such as local-field
potentials (LFPs) and electroencephalogram (EEG), to single
neuron activity.
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