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ABSTRACT

This paper introduces a generalized cross-correlation (GCC) mea-
sure for spike train analysis derived from reproducing kernel Hilbert
spaces (RKHS) theory. An estimator for GCC is derived that does
not depend on binning or a specific kernel and it operates directly and
efficiently on spike times. For instantaneous analysis as required for
real-time use, an instantaneous estimator is proposed and proved to
yield the GCC on average. We finalize with two experiments illus-
trating the usefulness of the techniques derived.

Index Terms— Spike train analysis, reproducing kernel Hilbert
spaces, cross-correlation, synchrony detection.

1. INTRODUCTION

Correlation-based measures are widely used tools for spike train
analysis [1]. In particular, the cross-correlation (CC) [2] is used to
assess associations between neurons, or its normalized version to
ease the statistical analysis [3]. However, because spike trains are
point processes, in practice the estimation of the cross-correlation is
not straightforward. A common approach is to bin the spike trains
by moving a sliding window over time and counting the number of
spikes in the window. In essence, binning is a transformation of ran-
domness in time to randomness in amplitude, which is very attractive
since it allows many of random process tools to be applied directly
to the binned data. The main disadvantage is that binning inherently
imposes time quantization on the spike times. This means that in-
formation will be lost if this information is contained in the precise
spike times and/or their relative timing. Another major limitation
is the fact that estimation of the cross-correlation assumes stationar-
ity, which seems unlikely given the time-varying nature of neuronal
function. Non-stationarity is often counteracted by performing the
analysis in moving windows, but these windows must be kept small
which greatly reduces the estimation accuracy. Finally, the analysis
is only valid for pairs of neurons.

This paper discusses these issues and proposes an approach based
on reproducing kernel Hilbert spaces (RKHS) to tackle them. The
key observation is that the cross-correlation is a symmetric and pos-
itive definite kernel [4]. Thus, by the Moore-Aronsajn theorem [5],
the CC kernel defines an RKHS where spike trains can be analyzed
and processed systematically. However, we are also interested in
addressing the limitations of the current methodology in the com-
putation of the cross-correlation, therefore we analyze first its con-
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struction, to reduce the cross-correlation to its essential ideas. Sub-
sequently, we present the generalized cross-correlation (GCC) as an
extended form and show how it gives rise to more effective ways
to estimate the cross-correlation among two neurons. One of these
tools is the instantaneous cross-correlation (ICC) which allows for
single-trial estimation due to ensemble averaging.

2. GENERALIZED CROSS-CORRELATION

Binned spike trains are discrete-time signals. Therefore, the cross-
correlation is defined in the usual way as the expectation of the
lagged product of the number of spikes per bin. Hence, assuming sta-
tionarity and ergodicity, the cross-correlation of binned spike trains
A and B can be estimated with
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where M is the number of bins and Na[n], Ng[n] are the number
of spikes in the nth bin for spike train A and B, respectively. Equa-
tion (1) clearly shows that C%'% is an inner product of the binned
spike trains. In RKHS theory the mapping into the RKHS is often
unknown, but in this context it is readily noticeable that binning im-
plements the mapping. However, binning of spike trains imposes
quantization on the spike times and is therefore undesirable, espe-
cially when one is interested in analysis of the temporal structure in
the form of synchrony as is the case here. This raises the question
of what is binning actually doing? And, correspondingly, can we
utilize a better way to do it? Both these issues are addressed in this
section.

As shown by Dayan and Abbott [6], binning is an estimator of
the instantaneous firing rate (apart from a normalization by the bin
size). Hence, a more general form of inner product, which we shall
call generalized cross-correlation (GCC), can be defined directly in
terms of the intensity functions of the point processes,
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where A4 (t) and Ap(t) denote the intensity functions of spike trains
A and B, respectively. This is a functional inner product in an in-
finite dimensional space. We might think that CY%% is finite dimen-
sional approximation of this functional measure.

In the statistical literature the conventional approach for inten-
sity function estimation of point processes is kernel smoothing [7],

with clear advantages in the estimation [8]. Denote the spike times



of a spike train, say, A, in the time interval [0, 7] as {t{* : i =
1,...,Na}, where N4 is the number of spikes of A in the interval.
The kernel estimated intensity function is given by
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where h is the smoothing kernel function. For intensity estimation
this function h must integrate to one. Substituting these intensity
estimations in the definition of the inner product in Eq. (2) and re-
stricting the evaluation to the [0, T'] interval yields an estimator for
the GCC

Na Np

Can(0) = 1 > e (1~ 22 +6). )

m=1n=1

where k- is the kernel obtained by the convolution of the intensity
estimation kernel A with itself, and 7 is the kernel size (or band-
width) parameter. Notice that C%% is a special case of Eq. (4) in
which the spike times are first quantized and then the GCC evalu-
ated with a rectangular kernel.

Unlike the cross-correlation of binned spike trains, the GCC es-
timator operates directly on the spike times with full resolution. It
also takes advantage of the typically sparse nature of spike trains
for efficient evaluation. Consequently, the computational complex-
ity depends on the firing rate of the neurons and not on the sampling
rate. This estimator allows, for example, to construct continuous-
time cross-correlograms with much higher precision and in a fraction
of the time required by explicitly smoothing [9].

A number of kernels x may be used in the GCC estimator. How-
ever, x must integrate to one (since so does h) and be symmetric and
positive definite. Then, it is easy to prove that the GCC estimator is
also a symmetric and positive definite kernel function, and therefore
denotes a well defined inner product. Thus, C'4 g induces an RKHS
for the manipulation and analysis of spike trains. Notice that Eq. (3)
can be interpreted as the convolution of the spike train with a win-
dow given by the smoothing function h, therefore the parameter
determines the smoothing introduced by h and the kernel, and thus
regulates the scale at which the GCC estimator interprets an inten-
sity function, between the extremes of synchrony in neuron firings
(for small kernel size) or firing rate (large kernel size).

3. INSTANTANEOUS CROSS-CORRELATION

The GCC is a more general form of cross-correlation that does not
require binning but it still needs a window of data to operate. It
is therefore still dependent on piecewise stationary assumption. As
a function of time, the integrand of the GCC (Eq. (2)), called the
instantaneous cross-correlation (ICC), provides a more appropriate
representation. ICC is a continuous function of the spike timings and
describes temporal structure of the inhomogeneous firings allowing
for a direct assessment of similarity in time. One might think of it as
a scalar inner product along each of the dimensions indexed by time.

Since we seek methodologies that can be applied online, only
causal intensity estimation kernels can be considered. We propose
to use the exponential function,

h(t) = (1/7) exp [t /7] u(t), (5)

where u(-) is the step function. The exponential function provides
both graded interactions and a time scale for the intensity estimation

by controlling the time constant 7. The ideas presented are not lim-
ited to Eq. (5), but it was chosen for its biological plausibility since
it can be interpreted as evoked post-synaptic potentials in a neuron,
its wide use throughout neuroscience [6], and its computational sim-
plicity.

Using the exponential function, at time ¢ the estimated intensity
function of spike train A is given as
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This is nothing but the filtering of a spike train by a first order IIR
filter. Then, the ICC is given simply by

ean(t,0) = Aa(t)Ap(t +0). @)

Notice that this two layer evaluation process can be computed very
easily, and is especially suited for hardware implementation.

For small values of 7 the ICC quantifies statistically our intu-
ition of synchrony, graded with the decaying exponential function
and followed by a coincidence detection operator implemented by
the product. When two neurons spike synchronously the product of
the estimated intensities at that time will be high, with a maximum if
they spike exactly at the same time. But, if the spikes are separated
by more than =~ 57 then the ICC is nearly zero. In this respect, the
ICC resembles the “gravity force” in the gravity transform frame-
work [10, 11], but the present work provides a statistical interpre-
tation for the estimator and much broader perspective not available
before.

As the formulation of ICC suggests, ¢4 p is a stochastic approx-
imation of the GCC under stationarity. This is obvious by taking the
expectation of Eq. (7) over time. In particular, the average ICC over
a time interval [0, 7] with a exponential function results in
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where, in this case, k. denotes the Laplacian kernel. (The integra-
tion goes up to infinity to account for the infinite support of the ex-
ponential function but only spike times before 7" are included.) Note
that the exponential function gives rise to the Laplacian kernel which
verifies all the requirements for Cap to represent a well defined in-
ner product.

3.1. ICC as a neural ensemble measure

The ICC exploits the temporal nature of the spike trains and enables
instantaneous estimation of synchrony because no temporal averag-
ing is done. The price paid is that, for a single pairs of neurons,
variability in the spike times is directly translated into the ICC and
thus its estimation is quite “noisy” due to events occurring by chance.
Instead of averaging ICC over time which yields the GCC in a time
interval, an alternative way to reduce the variance of this estimator
is to compute the expectation over the neural ensemble,

c(t,0) = E{cap(t,0)}, 9
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Fig. 1. Analysis of ICC as a function of synchrony. (Top) Level
of synchrony used in the simulation of spike trains. (Upper mid-
dle) Raster plot of firings. (Lower middle) Ensemble averaged ICC.
(Bottom) Time average of ICC in the upper plot computed with a
causal rectangular window 250ms long in steps of 25ms (dark gray).
For reference, it is also displayed the expected value (dashed line)
and this value plus two standard deviations (dotted line) for indepen-
dent neurons, together with the expected value during moments of
synchronous activity (thick light gray line), as obtained analytically
from the level of synchrony used in the generation of the dataset.
Furthermore, the mean and standard deviation of the ensemble aver-
aged GCC scaled by 71" measured from data in one second intervals
is also shown (black).

where E {-} denotes the expectation over all pairs of neurons.

The ensemble averaged ICC is a spatio-temporal measure of the
ensemble cooperation over time. In this form, and due to the ex-
change of time for ensemble averaging, the ICC is capable of detect-
ing the presence of dynamic cell assemblies in the ensemble with
high temporal resolution. However it raises the problem of neural
selection to evaluate the ensemble average.

4. EXPERIMENTS

4.1. ICC as a synchronization measure

For this example, we generated 10 homogeneous spike trains using
the multiple interaction process (MIP) [12]. The MIP model allows
for multiple spike trains to be generated according to a selected syn-
chrony level, €, which is the count correlation coefficient and quan-
tifies the probability of a spike co-occurrence in another spike train.

Figure 1 shows one realization of the generated spike trains with
varying levels of synchrony. All simulated spike trains have average
firing rate 20 spikes/s. The figure shows the ICC averaged for each
time instant over all pair combinations of spike trains. The time
constant, 7, of the exponential for intensity estimation was chosen
to be 2ms. To verify Eq. (8), the bottom plot shows the average
value of the mean ICC. This was computed with a causal 250ms
long sliding window in 25ms steps. To establish a relevance of the
values shown, the expectation and the expectation plus two standard
deviations are also shown, assuming independence between spike
trains. The mean and standard deviation, assuming independence,

are 1 and (ﬁ + 1)2 — 1, respectively. The expected value of the
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Fig. 2. Evolution of synchrony in a spiking neural network. (Top)
Raster plot of the neuron firings. (Middle) ICC over time. The inset
highlights the merging of two synchronous groups. (Bottom) Infor-
mation potential of the membrane potentials. This is a macroscopic
variable describing the synchrony in the neurons’ internal state.

ICC for a given synchrony level is 1+¢/(27)), with X the firing rate
of the two spike trains, and is also shown in the plot for reference.
Finally, the ensemble averaged GCC computed for each second of
data is also shown.

It is noticeable from the figure that the ICC estimated synchrony
increases as measured by ICC. Moreover, the averaged ICC is very
close to the theoretical expected value and is typically below the
statistical upper bound under an independence assumption as given
by the line indicating the expectation plus two standard deviations.
The delayed increase in the averaged ICC is a consequence of the
causal averaging of ICC. It is equally remarkable to verify that GCC
matches precisely the expected values from ICC as given analyti-
cally. This shows a significant advantage of the proposed GCC/ICC
framework as it can be used for analysis of data providing not only
detection ability but also the possibility to actually measure the syn-
chrony level with a high degree of accuracy.

4.2. Synchronization of pulse-coupled oscillators

In this example, we show that ICC can quantify synchrony in a
spiking neural network of leaky-integrate-and-fire (LIF) neurons de-
signed according to Mirollo and Strogatz [13]' and the ICC results
compare favorably with the extended cross-correlation for multiple
neurons. The network is initialized in a random condition and is
proven to synchronize over time (Fig. 2). The synchronization is

IThe parameters for the simulation are: 100 neurons, resting and reset
membrane potential -60 mV, threshold -45 mV, membrane capacitance 300
nF, membrane resistance 1 M2, current injection 50 nA, synaptic weight 100
nV, synaptic time constant 0.1 ms and all to all excitatory connection.
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Fig. 3. Zero-lag cross-correlation computed over time using a sliding
window 10 bins long, and bin size 1ms (top) and 1.1ms (bottom).

essentially due to leakiness and the weak coupling among the oscil-
latory neurons.

The raster plot of neuron firings is shown in Fig. 2. There are
two main observations: the progressive synchronization of the fir-
ings associated with the global oscillatory behavior of the network,
and the local grouping that tends to preserve local synchronizations
that either entrain the full network or wash out over time, as expected
from theoretical studies of the network behavior [13]. The ICC de-
picts this behavior precisely: the synchronization increases mono-
tonically, with a period of fast increase in the first second followed by
a plateau and slower increase as time advances. Moreover, it is pos-
sible to observe in the first 1.5s the formation of a second group of
synchronized neurons which slowly merges into the main group. In
addition, the envelope of ICC reveals the coherence in the membrane
potentials quantified by the information potential (IP). The IP is an
information theoretic quantity inversely proportional to entropy [14].
It was computed with IPy = 11 Y10, Y00 exp(—d(6:,0;)/20°)
with ¢ = 75mV.” The IP measures synchrony of the neuron’s in-
ternal state, which is only available in simulated networks. Yet the
results show that ICC was able to successfully and accurately extract
such information from the observed spike trains.

In Fig. 3 we also present the zero-lag cross-correlation over time,
averaged through all pairwise combinations of neurons. The cross-
correlation was computed with a sliding window 10 bins long, slid-
ing 1 bin at a time. Results are shown for bin sizes of Ims and
1.1ms. It is notable that although cross-correlation captures the gen-
eral trends of synchrony, it masks the plateau and the final synchrony
and it is highly sensitive to the bin size as shown in the figure, unlike
ICC. In other words, the results for the windowed cross-correlation
highlight the importance of working in “continuous” time and with-
out time averaging for robust spike train analysis.

5. DISCUSSION

In this paper we utilized RKHS ideas to define cross-correlation be-
tween spike trains in the form of an inner product between their
intensity functions. This result generalizes the often used cross-
correlation of binned spike trains. In addition, the formulation pre-
sented yields a simple estimator with better accuracy since binning
is avoided.

From a more practical perspective, we derived an instantaneous
estimator of the GCC, called the ICC, and proved its unbiasedness.
ICC is practically useful in multichannel spike train recordings be-
cause it is a measure of the similarity in temporal structure across the
ensemble of neurons. Because it is estimated in continuous time and
therefore without discretization error normally incurred with bin-

2The distance used in the Gaussian kernel was d(0;,0;) =
min (|6; — 0;|,15mV — |6; — 6;]), where 6; is the membrane potential of
the ¢th neuron. This wrap-around effect expresses the phase proximity of the
neurons before and after firing.
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ning, higher temporal resolution is achieved. Particularly in the ex-
amples shown, we chose to illustrate the use of ICC to characterize
temporal structure in the form of synchronous firings. The disad-
vantage in the ensemble average approach however is that it requires
knowledge a priori of the neurons that belong to an ensemble. We
are currently working on this problem and hypothesize the solution
might involve clustering of neurons or PCA of their responses.

This paper focuses on how the RKHS can be utilized to better
analyze spike trains. It must be remarked however that the establish-
ment of an RKHS associated with the cross-correlation is perhaps of
even higher importance for the derivation of more principled algo-
rithms to process spike trains.
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