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Abstract— Neurons are point process systems, in the sense
that the inputs and output which are spike trains can be treated
as point processes. System identification of a point process
system has been studied mostly with single input. However,
multiple input is required in many applications such as liquid
state machines or neural prosthetics. We propose a simple
multiple-input spike based adaptive filter which is based on an
integrate-and-fire neuron model. The optimal closed solution is
derived, and the performance is analyzed with respect to noise
in various parameters and measurement.

I. INTRODUCTION

Biological neuronal networks utilize both continuous am-
plitude signals and point process signals for computation.
The signals are almost always greatly undersampled due to
the enormous number of signal sources and limitations of the
measurement technology. In many cases, only spike trains
are available because spike trains have high signal to noise
ratios. Thus, neuronal systems can be best modeled as point
process systems. System identification of such systems has
various applications such as neural prosthetics [1], system
identification of a single neuron [2], modeling neuronal
networks [3], designing a natural readout for liquid state
machines [4], and calibration of neuromorphic VLSI [5].
In order to obtain the analytical solution for the system
identification problem that would provide insight into the
problem, we use a simplified model which deviates from
standard biological models. In addition, it will provide a
baseline for future studies.

There has been extensive work done in identifying point
process systems. Traditional adaptive signal processing tech-
niques, such as Volterra series [6] or least mean squares
filter methods [7], can be applied to point processes by
discretizing the time to get the input signals and thresholding
the output signal to get spike train outputs. An alternative
approach is to use a frequency domain estimation of the
intensity functions assuming Poisson statistics [8], [3], [9].
For continuous input to point process output, neuron models
are usually incorporated [10], [2]. Although some of the
previous work can be extended to multiple inputs of point
processes, there is not much work specifically addressing this
goal. Current multielectrode recording technology provides
the opportunity to estimate the spatial organization of the
inputs to a neuron or a neuronal network (cf. [11]) rather than
synaptic transfer function or neuronal response to a current
injection.
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Fig. 1. Schematic diagram for the architecture of the filter for three input
spike trains.

The goal of this paper is to use multiple spike trains as
inputs to a neuron model that generates precise spike timing.
In order to derive an analytical optimal solution, we use an
integrate-and-fire (IF) neuron with a static linear synapse. As
a result of this model and our cost function, a Wiener-like
solution to estimate the synaptic weights is obtained.

II. MODEL

The architecture of the model consists of two parts: 1)
conversion of input spike train to continuous synaptic current,
and 2) integration of current and thresholding to form a
output spike train (Fig. 1). For an ideal IF neuron, the integral
of the input current between two consecutive firings, denoted
as toi and toi+1, equals the threshold,∫ to

i+1

to
i

I(t)dt = θ (1)

where I(t) ≥ 0 is the input current, θ is the threshold
voltage. When the IF neuron fires, the membrane potential
and all synaptic input currents are reset (single compartment
model). This system wide reset erases the effect of history,
thus the next output action potential is only dependent on the
input spikes received after the previously generated action
potential.

In the simplest case, all synapses have identical time-
invariant dynamics and can be represented as a causal linear
filter h and a scaling factor (synaptic weight) of wj ≥ 0.
Then, the individual post-synaptic current qj(t) and total
input current I(t) will be represented as:

qj(t) =
∑

to
i≤tj

k

h(t− tjk), (2)

I(t) =
∑

j

wjqj(t), (3)

where toi is the last output spike of the neuron, tjk is the k-th
spike time of j-th input spike train, and the summation in



qj is over valid k, so that only the input spikes after the last
output spikes are summed. Now the membrane potential is

v(t) =
∑

j

wj

∫ t

to
i

qj(τ)dτ. (4)

Let us simplify the integral,∫ t

to
i

qj(τ)dτ =
∫ t

−∞

∑
to
i≤tj

k≤t

h(τ − tjk)dτ (5)

=
∑

to
i≤tj

k≤t

H(t− tjk) (6)

where we define

H(t) =
∫ t

−∞
h(τ)dτ. (7)

Now the membrane potential is simplified to,

v(t) =
∑

j

wj

∑
to
i≤tj

k≤t

H(t− tjk). (8)

We used a simple exponentially decaying synapse,

h(t) =
1
τ

e−
t
τ u(t) (9)

H(t) = (1− e−
t
τ ) u(t) (10)

where u(t) is the Heaviside function. However, any type of
synapse can be used without much effort. The time constant
for each synapse can be different, but for simplicity of the
presentation of the method they are fixed to be the same.
For simulation, Newton’s method is used to find the precise
firing times of the IF neuron.

III. COST FUNCTION

For a given desired output spike train, the membrane
potential has the following constraints:

v(t) <θ, for toi < t < toi+1 (11)
v(t) =θ, for t = toi (12)

Since in IF neurons, v(t) is a monotonic increasing function
between consecutive action potentials, the second constraint
is sufficient to ensure the first constraint.

Let us solve this by minimizing the mean square error
(MSE) defined for the period between each pair of action
potentials. The MSE cost function can be estimated with M
desired output spikes toi ,

J =
1
2

1
M

M−1∑
i=0

(v(toi+1)− θ)2 (13)

=
1
2

1
M

M−1∑
i=0

(
∑

j

wj

∑
to
i≤tj

k≤to
i+1

H(toi+1 − tjk)− θ)2,

(14)

Fig. 2. Euclidean distance between true weight vector and estimated weight
vector in log scale over the number of desired output spikes used for the
estimation. For less than 10 desired spikes, the estimation is highly unstable,
but after that the estimated weight converges rapidly. Monte Carlo simulation
is performed for 200 runs for each number of desired spikes. The number
of input spike trains was 10, the mean input firing rate was 12 Hz, the
threshold was 0.1, synaptic time constant was 5 ms, and the true weights
were uniformly distributed between 0 and 0.01.

where to0 = 0. Since H , tjk, and toi are all known, it can
simply be written as,

J =
1
2

1
M

M−1∑
i=0

(
∑

j

wjαij − θ)2, (15)

where αij =
∑

to
i≤tj

k≤t H(toi − tjk) (the summation is over
the valid range of k). wjαij is the contribution of j-th neuron
to the membrane potential after i-th output spike at time of
the i + 1-th output spike.

IV. SOLUTION

By letting the partial derivative of the cost function with
respect to weights wk to be 0, we can find the minimum of
the quadratic performance surface.

∂J

∂wk
=

1
M

M−1∑
i=0

(
∑

j

wjαij − θ)αik. (16)

Thus, the optimal solution satisfies the following equation,∑
i

(
∑

j

wjαij − θ)αik = 0. (17)

Define a matrix Ajk =
∑

i αijαik, and a vector Bk =∑
i θαik then,

A~w = ~B, (18)

which can be solved by using the Moore-Penrose pseudo
inverse A†,

~w = A† ~B. (19)



Fig. 3. Distance between output spike train generated with true weights
and estimated weights measured with a slightly modified distance measure
of [12] with a time constant of 50 ms (normalization with 1

M
in equation

(2.2)). Same Monte Carlo runs as Fig. 2.

Fig. 4. Comparison of output spike trains from true weight and estimated
weight. The weights were estimated with 66 desired spikes, and the precision
of spike timing was 5 ms (top) and 1 ms (bottom). This corresponds to a
sampling rate of 200 Hz and 1 kHz.

Fig. 5. Effect of spike time precision to error in weight estimation. Error in
weight linearly decreases as precision increases up to 10 ns. The simulated
spike times using Newton’s method with a given precision upper bound with
Poisson input and 20 desired output spikes. The average is plotted as black,
and 100 Monte Carlo runs are plotted as gray.

Fig. 6. Effect of noisy jitter in input spike timings. The error in weight
verses standard deviation of Gaussian noise is plotted. Precision was 10−5,
and 20 desired output spikes was used for the estimation. Again, average is
plotted as black, and 100 Monte Carlo runs are plotted as gray.

V. ANALYSIS

Practically, no system parameter or measurement can be
infinitely precise. In this section, we analyze the performance
of the estimator for various sources of noise. For all compu-
tation, mutually independent sets of homogeneous Poisson
input spike trains were used as input. The number of input
spike trains is 10, the average firing rate is 12 Hz, and the
synaptic time constant τ is 5 ms, if not stated otherwise.

A. Number of desired spikes

The number of unknowns in the system is determined by
the number of input spike trains N . Since, the number of
rows in A is determined by the number of desired output
spike M that is used for training, (18) is underdetermined
if M < N . Even when it is overdetermined, depending on
the space spanned by the input spike trains, the estimate is
not perfect, and the error of estimate will decrease as more
desired spikes are used. In Fig. 2, the error is measured as
the error in weight vector estimation, and the drop of the
mean and variance of the error after M = 10, the number
of unknowns, is clearly observed.

We can also measure the error with the distance between
the output spike trains of a system with the true weights and
the estimated weights for the same novel set of input spike
trains. In Fig. 3, a similar trend can be observed as the weight
error. However, the testing involves using Poisson input spike
trains, which increases the variance. Thus, we will use weight
distance to measure the estimator performance.

B. Precision of spike timings

The precision of spike times is fundamentally restricted
by sampling rate of the recording device. In Fig. 4, two
examples of prediction for the output spike train are shown.
Fig. 5 shows the improvement in weight estimation for
improvement in spike time precision. Note that the error
linearly decreases as precision increases.

In the level of (biological or silicon) neuron, there is noise
in the membrane potential and action potential generation



Fig. 7. Effect of constant delay in input spike train in log-log scale. The
positive delay is indicated by the black solid line, and the negative delay
is indicated by the red circled line (the gray and orange corresponds to the
Monte Carlo instances respectively).

Fig. 8. Effect of time constant τ mismatch. The relative amount of
mismatch in τ verses weight distance is plotted. (inset) same plot for τ
in [0.5, 10] ms. The actual value used to generate the training data is 5 ms.

mechanism (threshold). This can be approximated by putting
jitter to individual spike timings of the input. Fig. 6 shows
the error in weight over standard deviation of the noise. Jitter
in the output spike train also has a similar trend (data not
shown).

C. Delay and time constants

In a biological system, there are three major sources of
delays for a neuron: 1) the conduction delay through the axon
and synaptic delay, 2) the shape of post synaptic potential
which effectively contributes to the firing probability distri-
bution in a causal manner, 3) the propagation delay through
the dendrite which can be modeled as cable, and distorts the
shape of the post synaptic potential. The model in this paper
is restricted to have only delays of type 2).

By shifting all input spike trains with a constant time, the
error due to the shift is nearly linear for large delays as shown
in Fig. 7. It is notable that negative delays (input precedes
output) have less error. For positive delays, the first spike
that is going to be lost is the last spike, which contributes

The fact that for positive delays it is easy to lose the last
spike, that generated the desired output, but for negative de-

lays the initial spikes which saturate and does not contribute
to the actual firing could be the reason.

For the time constant τ mismatch, Fig. 8 suggests the
correct value of τ is strongly preferred. Since the slope is
almost linear, it is possible to estimate τ in a straight forward
manner.

VI. CONCLUSION

The optimal closed form solution for identifying weights
in a simple point process system is presented. The method
provides means to estimate synaptic weights from a short
segment of a spike train and it is computationally efficient
since it only depends on the number of spikes, no matter how
long the spike train is. This is possible from the fact that
in the model the membrane potential is a non-decreasing
function during the time between a pair of output spikes.
However, due to the deterministic nature of the model, it is
highly sensitive to many parameters, as demonstrated in the
figures. Thus, it is necessary to estimate the other parameters
accurately, and also have high temporal resolution spike
trains. Generalization of the method to estimate the synaptic
time constant and conduction delay is necessary to apply to
recorded data.

ACKNOWLEDGMENTS

I. P. thanks Karl Dockendorf and Jie Xu for insight-
ful discussion. This work was partially supported by NSF
grant ECS-0422718. A. R. C. Paiva was supported by
Fundação para a Ciência e a Tecnologia under grant
SFRH/BD/18217/2004.

REFERENCES

[1] T. Berger, M. Baudry, R. Brinton, J.-S. Liaw, V. Marmarelis, A. Y.
Park, B. Sheu, and A. Tanguay, “Brain-implantable biomimetic
electronics as the next era in neural prosthetics,” Proceedings of
the IEEE, vol. 89, no. 7, pp. 993–1012, 2001. [Online]. Available:
http://ieeexplore.ieee.org/iel5/5/20336/00939806.pdf

[2] L. Paninski, “Maximum likelihood estimation of cascade point-process
neural encoding models,” Network: Comput. Neural Syst., vol. 15, p.
243262, 2004.

[3] D. R. Brillinger, J. Hugh L. Bryant, and J. P. Segundo, “Identification
of synaptic interactions,” Biological Cybernetics, vol. 22, pp. 213–228,
1976.

[4] I. Park, D. Xu, T. B. DeMarse, and J. C. Prı́ncipe, “Modeling of
synchronized burst in dissociated cortical tissue: An exploration of
parameter space,” in IEEE International Joint Conference on Neural
Networks, 2006.

[5] D. Chen, Y. Li, D. Xu, J. Harris, and J. Principe, “Asynchronous
biphasic pulse signal coding and its CMOS realization,” in IEEE
International Symposium on Circuits and Systems (ISCAS), Greece,
May 2006, p. 22932296.

[6] V. Marmarelis and T. Berger, “General methodology for nonlinear
modeling of neural systems with poisson point-process inputs,” Math-
ematical Biosciences, vol. 196, pp. 1–13, 2005.

[7] X. Gong and J. G. Harris, “A spike-based adaptive filter,” IEEE In-
ternational Conference on Electronics, Circuits and Systems (ICECS),
pp. 322 – 325, 2004.

[8] D. R. Brillinger, “Identification of point process systems,” The Annuls
of Probability, vol. 3, pp. 909–929, 1975.

[9] R. Dahlhaus, M. Eichler, and J. Sandkühler, “Identification of synaptic
connections in neural ensembles by graphical models,” Journal of
Neuroscience Methods, vol. 77, pp. 93–107, 1997.

[10] E. N. Brown, D. P. Nguyen, L. M. Frank, M. A. Wilson, and V. Solo,
“An analysis of neural receptive field plasticity by point process
adaptive filtering,” PNAS, vol. 98, pp. 12 261–12 266, 2001. [Online].
Available: www.pnas.org/cgi/content/full/98/21/12261



[11] N. Masuda and K. Aihara, “Spatiotemporal spike encoding of a
continuous external signal,” Neural Computation, vol. 14, p. 15991628,
2002.

[12] M. C. W. van Rossum, “A novel spike distance,” Neural Computation,
vol. 13, pp. 751–763, 2001.


